
Glasses

Viscosity

Order

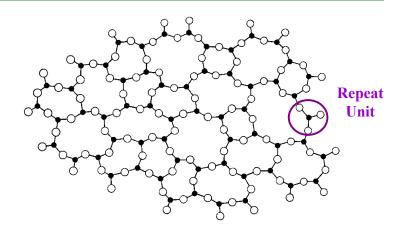
Glass Forming Materials

Long-Range and Short-Range

Glass Properties

Glass Transitions

Mon., Oct. 6, 2003


• HW: 6.2,4,18,32,42

MATS275: INTRODUCTION TO MATERIALS SCIENCE

What Makes a Glass?

- Amorphous
 - no long-range order
 - repeat units but no lattice constants
 - III-defined Melting Point
 - glass-transition temperature

Lack of Long-Range Order

Glass-Transition

S.V. =
$$\frac{\text{Volume}}{\text{Mass}}$$

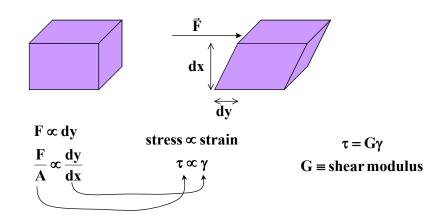
Supercooled liquid

Supercooled liquid

Slope: $\alpha_{V} = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)$

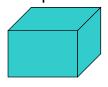
TEMPERATURE

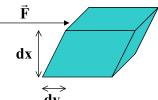
What is the Glass Transition?


- Below T_g
 - NO molecular motion at all solid is frozen
- Between T_q and T_m
 - Reorientation and motion of connected repeat units
 - chains bend and wiggle

ON THE TIME SCALE
OF THE EXPERIMENT

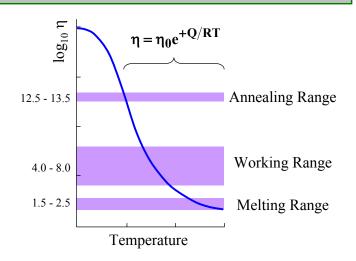
- Above T_m
 - Free motion of all molecules


Shear Strains


• The elastic constant for a shear strain...

Shear in Fluids

 Now force is proportional to the rate of displacement...


$$\mathbf{F} \propto \mathbf{d} \mathbf{v}$$

$$\frac{F}{A} \propto \frac{dv}{dx} = \frac{d\left(\frac{dy}{dt}\right)}{dx}$$

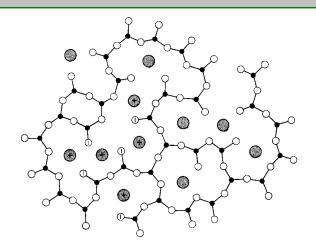
$$\tau \propto \frac{d\left(\frac{dy}{dx}\right)}{dt}$$

$$\tau = \eta \frac{d\gamma}{dt} = \eta \frac{dv}{dx}$$

Viscosity

What Forms a Glass?

- Anything, but usually
 - oxidesTHE MOST IMPORTANT
 - sulfides
 - selenides
 - tellurides
 - polymers


Network Formers/Modifiers

Formers	Intermediates	Modifiers
SiO_2	Al_2O_3	Na ₂ O
B_2O_3	TiO ₂	K_2O
GeO_2	ZrO_2	CaO
P_2O_5		MgO
		BaO
		PbO
		ZnO

What Forms a Glass?

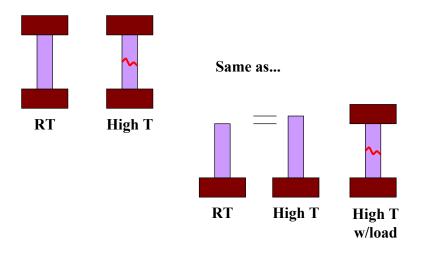
- · Zachariasen's Rules
 - oxide glass networks are composed of oxide polyhedra
 - -CN(O) = 2
 - -CN(M) = 3 or 4 (tetrahedra or triangles)
 - Polyhedra share corners not edges or faces
 - Polyhedra must share at least 3 corners

Na₂O Network Modifiers

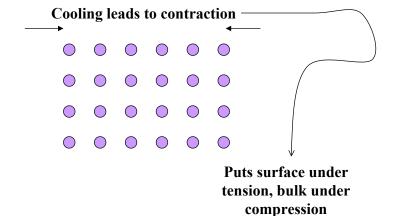
Important Glass and Ceramic Props

- · Brittle Fracture
 - almost no slip
- Static Fatigue
 - chemical induced degradation (Si-OH)
- Creep
 - Sliding of grains, crack growth
- Thermal Shock
 - Thermal expansion problems

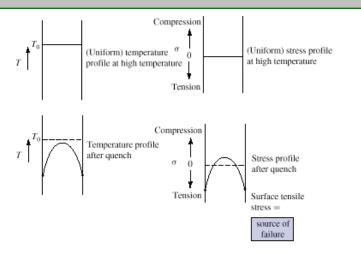
Thermal Effects


Coefficient of Expansion

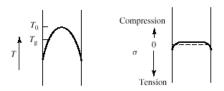
$$\alpha = \frac{1}{L} \frac{dl}{dr}$$


• Thermal Conductivity (Fourier's law)

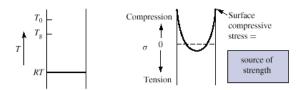
$$k = -\frac{1}{A} \frac{dQ}{dT} \frac{dT}{dx}$$


Constrained Expansion

Thermal Shock



Surface in Tension



Tempering Glass

(b) Air quench surface below T_e .

(c) Slow cool to room temperature.

A Few Crystals

- We can also add a nucleating agent (ex., TiO2) that forms small crystallites.
- Can reduce thermal expansion increase thermal shock strength
 - CorningWare based on $\text{Li}_2\text{O-Al}_2\text{O}_3\text{-SiO}_2$.

What Forms a Glass?

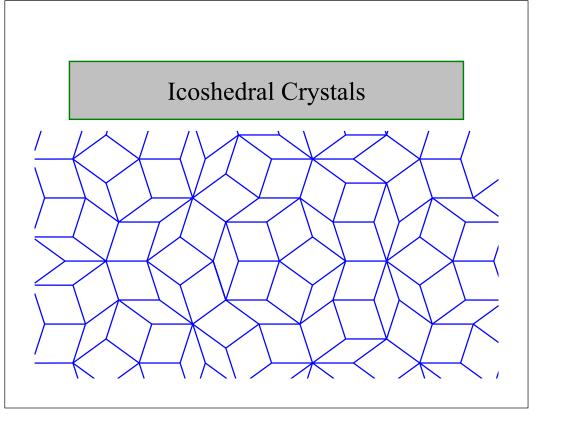
- Anything, but usually
 - oxides
 - sulfides
 - selenides
 - tellurides
 - polymers THE MOST IMPORTANT

Polymers Tacticity

- Attach Side Groups
 - one side = isotactic
 - alternate sides = syndiotactic
 - randomly = atactic

Polymers Other Factors

- Size of Side Groups
- · Chain Branching
- · Complexity/Length of Chain
- · Secondary Bonding



Some Glass Transition Temps

	T_g	T_m
PP (iso)	-10	176
PMMA (syn)	115	>200
PMMA (iso)	45	160
PTFE	126	327

MetGlass

- Metals can be induced to form glasses if cooled rapidly enough.
- Must be used at low temperatures
- High strength (no dislocation motion)
- · No grain boundaries corrosion resistant
- · Good magnetic properties
 - transformer cores
 - recording heads

