Phases

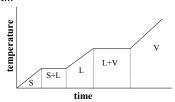

MATS275: INTRODUCTION TO MATERIALS SCIENCE

Wednesday, Oct. 8, 2003

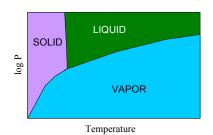
- · Phases One Component
- Gibbs Phase Rule
- Two Component Phase Diagrams
 - Normal
 - Lever Law
 - Miscibility Gap
 - Eutectic

What is a Phase?

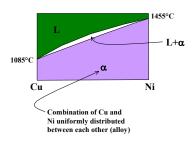
- · A homogeneous, physically distinct, mechanically separable portion of a material.
- · Characterized by a sharp difference in physical and/or chemical characteristics.


What Determines a Phase?

- History
- · Temperature
- · Composition
 - Component a distinct chemical species
 - System a collection of bodies that can be physically isolated.
 - Equilibrium when a system has its minimum Gibbs free energy

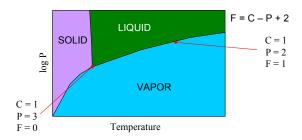


Melting Ice

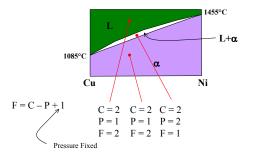

• Place a block of ice on a constant source of heat...

One-Component Phase Diagram

A SIMPLE PHASE DIAGRAM Cu:Ni


_

Gibbs Phase Rule

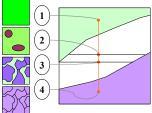

$$P + F = C + N$$

(F = C - P + 2 or 1)

- P = number of phases
- F = degrees of freedom
- C = number of components
- N = number of non-compositional variables
 - Temperature & Pressure varying = 2

One-Component Phase Diagram

A SIMPLE PHASE DIAGRAM Cu:Ni

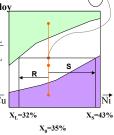


·
_

COOLING

Cu:Ni (40% Ni)

- At (1) 1300°C
 - all liquid
- At (2) 1250°C
 - part liquid part solid
- At (3) 1240°C
 - part liquid part solid
- At (4) 1200°C
 - all solid



Using the Lever Law

• To find what percentage is α at 1250°C: (%Ni in α) f_S +(%Ni in L)(1- f_S)=%Ni in alloy_____

 $\mathbf{X}_{\mathbf{S}}\mathbf{f}_{\mathbf{S}} + \mathbf{X}_{\mathbf{L}}\mathbf{f}_{\mathbf{L}} = \mathbf{X}_{\mathbf{0}}$

 $f_{S} = \frac{(\% \text{Ni in alloy}) - (\% \text{Ni in L})}{(\% \text{Ni in } \alpha) - (\% \text{Ni in L})} = \frac{X_{0} - X_{L}}{X_{S} - X_{L}}$ $f_{S} = \frac{X_{0} - X_{L}}{X_{S} - X_{L}} = \frac{R}{R + S}$ $= \frac{35 - 32}{43 - 35} = 0.375 = 37.5\%$

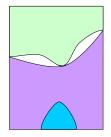
Non-Ideal Behvior

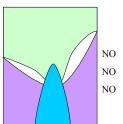
· Liquid clusters

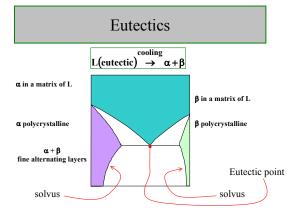
More clustering

Non-Ideal Behvior

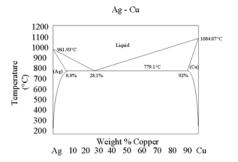
· Or solid clusters

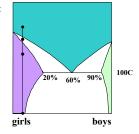




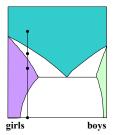

More clustering

Miscibility Gaps


• Throw in a miscibility gap...



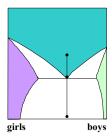
Au/Cu Phase Diagram


Eutectic Cooling Paths

- All liquid (2% boys)
- Some boys begin to condense out after crossing liquidus line. The composition of the a phase is determined by the lever law.
- Everything solid (2% boys)

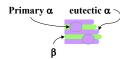
Eutectic Cooling Paths

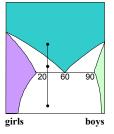
- All liquid (15% boys)
- Condensed boys in liquid girls (use lever law).
- All solid with 15 % boys
- Boys precipitate out form β particles in α matrix with compositions given by solvus lines and lever law.



•	•	•

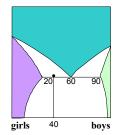
Eutectic Cooling Paths


- All liquid (60% boys)
- Begins to condense both boys and girls in a lamellar structure at the eutectic temperature.



Eutectic Cooling Paths

- All liquid (40% boys)
- Solid areas of α form down to Eutectic temp, where they will have a concentration of 20 %.
- The earlier solid (primary or proeutectic α) stays and the rest becomes lamellar (eutectic α).

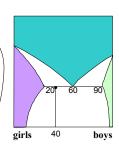


USING THE LEVER LAW

• 40 % boys (L + α)

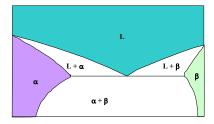
$$f_S = \frac{X_L - X_0}{X_L - X_S} = \frac{60 - 40}{60 - 20} = 50\%$$

USING THE LEVER LAW

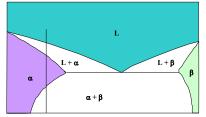

• 40 % boys (α + β)

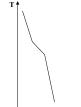
$$f_{\alpha} = \frac{X_{\beta} - X_0}{X_{\beta} - X_{\alpha}} = \frac{90 - 40}{90 - 20} = 72\%$$

$$f_{\beta} = \frac{X_0 - X_{\alpha}}{X_{\beta} - X_{\alpha}} = \frac{40 - 20}{90 - 20} = 28\%$$

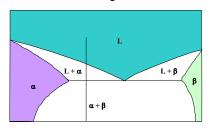

50% is proeutectic

22% is eutectic

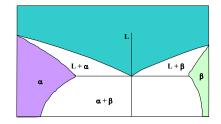

Eutectics

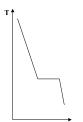

$$L(\text{eutectic}) \xrightarrow{\text{cooling}} \alpha + \beta$$

How Do We Figure This Out?


· Look at cooling curves...

How Do We Figure This Out?


· Look at cooling curves...



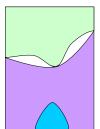
How Do We Figure This Out?

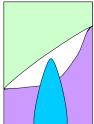
· Look at cooling curves...

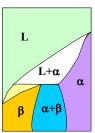
Cu-Zn Phase Diagram 1200 1100 1000 900 700 600 500 400 300 200_{Cu} ∟

60%

80%

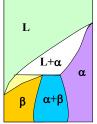

20%


40%


-			

Miscibility Gaps

• Enhanced clustering in solid



Peritectic

• Spontaneous formation of new phase on cooling:

 $\alpha + L \rightarrow \beta$

OTHER ELEMENTS

- Eutectic
- α $A \rightarrow A \rightarrow A$ $A \rightarrow A \rightarrow A$
- $L \rightarrow \alpha + \beta$

- Eutectoid
- $\alpha \rightarrow \alpha^{+}\beta \qquad \beta$ $\alpha \rightarrow \alpha^{+}\beta \qquad L$
- $\gamma \rightarrow \alpha + \beta$

- PeritecticPeritectoid
- $\alpha + L$ β L
- $\alpha + L \rightarrow \beta$

- Monotectic
- γ
- α+β→γ
- $\alpha \searrow L_{\alpha+L_2}$
- $L_1 \rightarrow L_2 + \alpha$
- · Intermetallic compounds