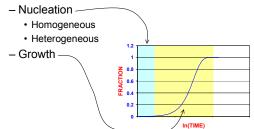
Time-Dependence


Monday, Oct. 12, 2003

MATS275: INTRODUCTION TO MATERIALS SCIENCE

- · Phases Recap
- · Nucleation and Growth
- · The Avrami Relationship
- · Diffusionless Transformations
- · Quenching of Irons
- Phases and Microstructures
 - Cementite, Ferrite, Pearlite, Bainite, Martensite, and Spheroidite
- Hardenability
- Alloying of Steel

The Next Dimension: Time

No phase transformation occurs instantly.

Homogeneous Nucleation

- · Surface must form between phases
- Surfaces have high energy <
- Energy gained by phase change must offset this

Related to volume

Related to surface area

Free Energy Released by Phase Change

$$\Delta G_n = 4\pi r^2 \gamma + \frac{4}{3}\pi r^3 (\Delta G_v)$$

Free energy/area of surface

Nucleation Energy

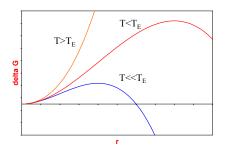
The Critical Radius

• Smaller than r* and particles redissolve, larger than r* and they grow on and on...

$$\begin{split} \frac{\mathrm{d}}{\mathrm{dr}} \left(\Delta G_{\mathrm{n}} \right) &= 8 \pi \mathrm{r} \gamma + 4 \pi \mathrm{r}^2 \left(\Delta G_{\mathrm{v}} \right) \\ 8 \pi \mathrm{r}^* \gamma + 4 \pi \mathrm{r}^{*2} \left(\Delta G_{\mathrm{v}} \right) &= 0 \\ \mathrm{r}^* &= \frac{-2 \gamma}{\Delta G_{\mathrm{v}}} \end{split}$$

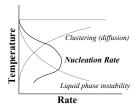
The Effect of Temperature

• Remember what the Gibb's Free Energy is... $\Delta G_v = \Delta H_v - T \Delta S$


$$\begin{split} \Delta G_v = & \Delta H_v - T_E \Delta S = 0 \\ \Delta S = & \frac{\Delta H_v}{T_E} \\ \Delta G_v = & \Delta H_v - T_E \frac{\Delta H_v}{T_E} = \Delta H_v \frac{T - T_E}{T_E} \\ \Delta G_v = & \left(\frac{\Delta H_v}{T_E}\right) \!\!\! \Delta T \end{split}$$

The Effect of Temperature

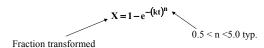
$$r^{*} = \frac{-2\gamma}{\Delta G_{v}} = \frac{-2\gamma T_{E}}{\Delta H \Delta T} \qquad \qquad \Delta G_{n} = 4\pi r^{2}\gamma + \frac{4}{3}\pi r^{3} \big(\Delta G_{v}\big)$$


$$\begin{split} \Delta G_n &= 4\pi \!\! \left(\! \frac{-2\gamma T_E}{\Delta H \Delta T} \! \right)^{\!2} \gamma + \! \frac{4}{3}\pi \!\! \left(\! \frac{-2\gamma T_E}{\Delta H \Delta T} \! \right)^{\!3} \!\! \left(\! \frac{\Delta H}{T_E} \Delta T \right) \\ &= \! \frac{16\pi \gamma^3 T_E^2}{3\Delta H^2} \! \left(\! \frac{1}{\Delta T} \right)^{\!2} \end{split}$$

Free Energy Change vs. r

Competing Mechanisms

• But there is also the need to diffuse...


Nucleation Mechanisms

- Homogeneous
- · Heterogeneous
 - Coherent (lattice match across interface)
 - Semicoherent
 - Incoherent

	-
_	
_	

Growth

- · Growth proceeds from nucleation.
- · Avrami relation...

k is a rate constant

The Transformation Rate

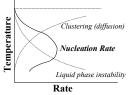
 $r = \frac{1}{t_{1/2}}$ At a given temperature $Q - Activation \ Energy$ $T - Absolute \ Temperature$ $R - Gas \ Constant$ $A - Pre-exponential \ Constant$

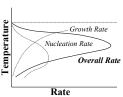
TEMPERATURE DEPENDENCE 1 0.9 0.8 0.7 INCREASING TEMPERATURE 0.5 0.5 0.2 0.1 0 In(TIME)

Crystallization of Cu

 At 900°C, the growth rate of of Cu is 10⁶ times as large as at 400°C. What is the activation energy?

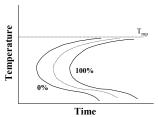
$$\frac{G_{900}}{G_{400}} = \frac{Ae^{-Q/R(1173 \text{ K})}}{Ae^{-Q/R(673 \text{ K})}} = e^{-\frac{Q}{R}(\frac{1}{1173} - \frac{1}{673})}$$


$$ln(10^6) = -\frac{Q}{R}(\frac{1}{1173} - \frac{1}{673})$$

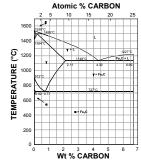

$$13.8 = \frac{Q}{8.314 \frac{J}{\text{mol} \cdot \text{K}}} (6.33 \times 10^{-4})$$

$$Q = 181 \frac{\text{kJ}}{\text{mol}}$$

Competing Mechanisms


solidification

Flipping the Rate


 The inverse of the rate is the time it takes for the reaction to complete...

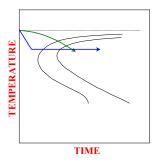
Types of Transformations

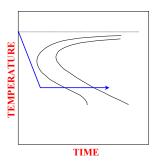
- · Diffusional
 - solidification, recrystallization, grain growth
 - eutectic (change of phase composition)
- Diffusionless
 - Martensitic

Fe-Fe₃C Phase Diagram

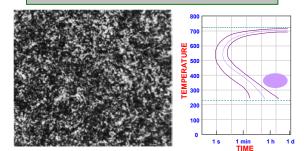
- α Ferrite BCC iron
- $\boldsymbol{\beta}$ high temperature BCC iron
- γ Austenite FCC iron
- Fe₃C Cementite or Carbide

Slow Cooling


- Slow cool
- Cool and hold at 650°C
- Forms coarse pearlite.

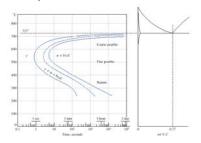

Faster Cooling

- · Moderate cool
- Cool and hold at 575°C
- Forms fine pearlite.

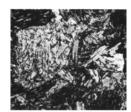


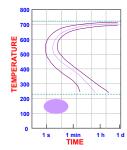
Even Faster Cooling

- Cool and hold at 300°C
- Forms Bainite.

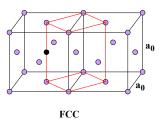


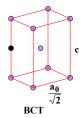
Bainite




Martensitic Transformation

· Athermal, Diffusionless

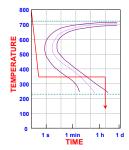

Martensite



Martensitic Transformation

· Austenite to Martensite

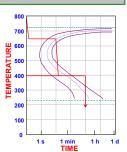
How Much Are We Talking About?


 How many Carbon interstitials are we talking about in eutectoid steel (0.76 % C)?

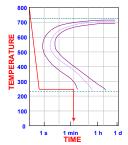
$$\begin{split} 0.0076 = & \frac{m_{C}}{m_{C} + m_{F}} = \frac{(12.001 \text{ u})n_{C}}{(12.001 \text{ u})n_{C} + (55.85 \text{ u})n_{F}} \\ = & \frac{(12.001 \text{ u})}{(12.001 \text{ u}) + (55.85 \text{ u})\frac{n_{F}}{n_{C}}} \end{split}$$

$$\frac{n_{\rm F}}{n_{\rm C}} = \frac{\frac{(12.001\,\mathrm{u})}{0.0076} - (12.001\,\mathrm{u})}{(55.85\,\mathrm{u})} = 7.02$$

Example


- · Quench to 350°C
- · Hold for 3 hrs
- · Quench to RT

_			
-			
-			
_			
-			
-			
_			
_			
-			


Example

- Quench to 650°C
- Hold for 20 s
- Quench to 400°C
- Hold 17 min
- · Quench to RT

Example

- Quench to 250°C
- · Hold for 2 min.
- · Quech to RT

