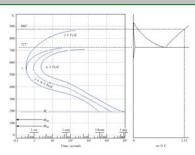
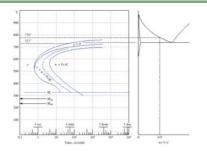
Metals


Wednesday, Oct. 15, 2003

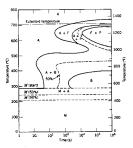
MATS275: INTRODUCTION TO MATERIALS SCIENCE

- · Annealing Steels
- How Steel is Made
- Alloy Steels
- Stainless Steel
- Non-Ferrous Metals
 - Aluminum
 - Magnesium
 - Titanium


 - CopperNickel
 - Others

Hypereutectoid Steel

1.13 % C

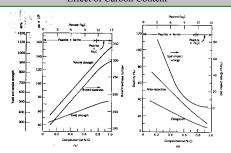

Hypoeutectoid Steel

0.5 % C

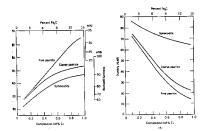
4340 Alloy Steel

Rules of Thumb

- · Cementite
- · Martensite
 - hard but brittle
- Ferrite
 - ductile and soft machinable

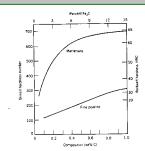

Characteristics of Phases

- Pearlite
 - ferrite mixed with cementite makes it hard
- Fine Pearlite
 - even harder and stronger
 - grain boundary adhesion
 - grain size strengthening
- · Spheroidite
 - hard & strong because of small grains, but also ductile



Pearlite

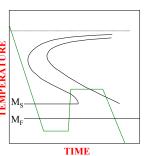
Effect of Carbon Content


Pearlite & Spheroidite

Characteristics of Phases

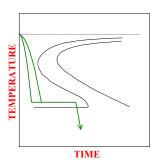
- Martensite
 - hardest and strongest
 - alloy effects (rather than grain size)
 - few slip directions in BCT
 - most brittle almost unusable
 - quenching can lead to cracking
 - swelling due to BCT

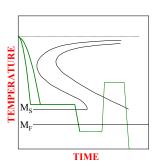
Martensite


TEMPERING

 Martensite converts to small grains of grains of cementite in ferrite - help to reinforce it.

TEMPERING


- Martensite converts to small grains of cementite in ferrite -
- Spheroidite
 Thermal stresses on quench can cause cracking.


MARTEMPERING

 Hold just above Martensite temperature to equilibrate

MARTEMPERING

 Hold just above Martensite temperature to equilibrate

Annealing

- Process Anneal removes effects of work-hardening, restores ductility
 - Stress Relief
 - Normalizing
- Full Anneal

Iron & Steel • 2.0 - 4.5 wt % C = Cast Irons • 0.05 - 2.0 wt % C = Steel ->5 wt % other elements = high-alloy steel - <5 wt % other elements = low-alloy steels >90 wt % of the metallic materials used by humans are ferrous alloys $\rho = 7.87 \text{ g/cc}, BCC, T_m = 1538^{\circ}C$ How To Get Steel · Coke + iron ore into blast furnace. - Reduction Rxn $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ · Pig iron transferred to oxygen furnace. $FeO+C \rightarrow Fe+CO$ - Before reaction starts, lime is added as a flux - Alloying elements added Why Alloys? Plain carbon steels cannot be strengthened past 100,000 psi without a substantial loss in ductility and impact · Large area pieces of plain carbon steel are subject to

- Large area pieces of plain carbon steel are subject to temperature gradients - non-uniform martensite formation.
- Plain carbon steels are more easily oxidized and corroded.
- Plain carbon steels are less impact resistant at low temperatures.
- Some plain carbon steels must be quenched so rapidly that warping and/or cracking become a problem.

What Alloys?

AISI#	Elements	AISI#	Elements
13xx	Mn	5xxx	Cr
40xx	Mo or Mo & S	61xx	Cr, V
41xx	Cr, Mo	86xx	Ni, Cr, Mo
43xx	Ni, Cr, Mo	87xx	Ni, Cr, Mo
44xx	Mo	88xx	Ni, Cr, Mo
46xx	Ni, Mo	92xx	Si or Si & Cr
47xx	Ni, Cr, Mo		
48xx	Ni, Mo		

AISI = American Iron and Steel Institute SAE = Society of Automotive Engineers

What Alloys Do	W	hat	Al	loys	Do
----------------	---	-----	----	------	----

Form

Form

Dissolve

	in Ferrite	inCarbide	Carbide	Compound
Ni	0			
Si	0			$SiO_2 \cdot M_xO_y$
Mn	○ ←		(Fe, Mn) ₃ C	MnS, MnO·SiO ₂
Cr	○		(Fe,Cr) ₃ C	
Mo	○←	→0	Mo ₂ C	
\mathbf{W}	○←	→0	W_2C	
\mathbf{V}	0	→	V_4C_3	
Ti	0	→ ○	TiC	

Other Treatments of Steels

- · Carburizing and Nitriding
 - anneal in $\mathrm{CH_{4}}$, CO , or $\mathrm{CO_{2}}$
 - anneal in NH₃

Dissolve

- · Case Hardening
 - flame heat outside to form Martensite

form areas that are susceptible to fatigue and wear but not necessarily shock

Stainless Steels

- · ALL have at least 12% Cr
- Ferritic up to 30% Cr, <0.12% C
 - low cost, good strength ...structural uses
- Martensitic 12-17% Cr, 0.15-1.0 % C
 - hard, resists corrosion ... knives, bearings,
- Austenitic <0.03% C, 7 20% Ni
 - resists corrosion, non-magnetic, expensive

Aluminum Alloys

- Formed by Hall-Herault process
 electrolytic reduction of Al₂O₃
- · Abundant and inexpensive
- · Light Weight
- Corrosion Resistant
- Non-Toxic

 ρ =2.71 g/cc, FCC, T_m =660.4°C

Magnesium Alloys

- · Extracted from Chlorides in Sea Water
- · Very Reactive With Air
- · More Expensive Than Al
- · Light Weight
- · hcp So Not Very Ductile

 $\rho = 1.74 \text{ g/cc}, \text{HCP}, T_{\text{m}} = 649^{\circ}\text{C}$

Titanium Alloys

- · Separated at High Temperature From Ore
- · Very Expensive
- Corrosion Resistant (TiO₂)
- · Light Weight
- hcp up to 882°C then bcc
- · Embrittled by Light Elements at High Temp

 $\rho = 4.51$ g/cc, HCP, $T_m = 1668$ °C

Copper Alloys

- · Separated From Ore by Melting
 - slag drained off
- · Highly Conductive
- · Ductile
- Alloys
 - Cu-Zn = Brass
 - Cu-Sn = Bronze
 - Cu-Be = spring copper

 ρ = 8.94 g/cc, FCC, T_m = 1084°C

Nickel Alloys

- · Derived from ore
- · Used in High T Alloys
 - Monel = Ni/Cu
 - Inconel = Ni/Cr/Fe
 - Hastelloy = Ni/Mo/Fe/Cr
 - Superalloy = Ni/Al
- · Corrosion Resistant

 $\rho = 8.90 \text{ g/cc}, \text{FCC}, T_m = 1453^{\circ}\text{C}$

Zinc, Lead, and Others

- Zinc
 - Galvanization
- Lead
- · Refractory Metals
 - Mo, Rh, Ta, W
- · Precious Metals
 - Au, Ag, Pd, Pt