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The Quantum World

• Introduction
• Four Important Solutions to the 

Schrödinger Equation
– Free Electrons
– Electron in a Well
– Tunneling
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Photoelectric Effect

• When light strikes a solid, its energy can 
knock out an electron…so, if we increase the 
intensity, we should be able to knock out 
more electrons.

• BUT… this isn’t true.

Planck’s Constant

• The energy of a photon of light is proportional 
to the frequency:

• Or in angular frequency:
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deBroglie Waves

• For light,

• DeBroglie said…same goes for particles:
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A Typical Wavelength

• An electron is accelerated through 5 kV, what 
is its wavelength?
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A Typical Wavelength

• What about 2.5 V?
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What is a Wave?

• Simplest wave is called a “harmonic wave”.  It 
can be described by a wavefunction, Ψ, given 
by:

• Any function can be made up of a combination of sines and cosines, so 
once we’ve learned this, we can apply it to any function we like…sort of
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Superposition of Waves

• Add two waves, Ψ1, and Ψ2 having slightly different frequencies, 
ω and ω + ∆ω
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Superposition of Waves

• Add two waves, Ψ1, and Ψ2 having slightly different frequencies, 
ω and ω + ∆ω
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Heisenberg

• Notice, the better we know the momentum 
(k), the less we know the position (x).

• Heisenberg told us

• These are the best we can ever do…
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Implications of Uncertainty Principle

“The general implication of the U.P. is that there are two 
complimentary modes of describing the physical world: we can 
elect to discuss it in terms of the locations of the particles or in 
terms of their momenta.  It was an error of classical physics to mix 
these descriptions. (my emphasis) Unfortunately, the conditioning 
of classical physics has been so great that many people still feel 
that the U.P. denies them complete knowledge of the world.  I 
consider the correct attitude to be that classical physics 
unconsciously sought to be over complete.  The U.P. reveals that
there are alternative complete descriptions of the world; we 
should choose one description or the other, and not seek to mix 
them.”

P.W. Atkins, Quanta

An Important Equation

• Let’s take some d/dx’s of our Ψ:

• Recall…
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Schrodinger Equation

• Time Independent (function of position and not time, ie: a 
vibration)

• Time Dependent (function of position and time, ie: a wave)
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What Does This Mean

• Boundary value problems lead to certain 
allowed energies known as eigenvalues. The 
equations which satisfy these are called 
eigenfunctions.

• The eigenfunctions represent probability 
density:
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Other Rules

• ψ(x) must exist and satisfy Schrödinger
• ψ(x) and dψ(x)/dx must be continuous
• ψ(x) and dψ(x)/dx must be finite
• ψ(x) and dψ(x)/dx must be single-valued
• ψ(x) must go to 0 rapidly as x goes to infinity 

so that the function can be normalized.
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Case I:  Free Electron

• Free propagation in x direction (ie: V = 0)

• The solutions to this are known to be a harmonic oscillator given 
by:

• where α is given by:
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E is Parabolic for a Free Electron

• This yields a new expression 
for the allowed energies in 
terms of the wave number
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Case II:  Electrons in a Potential Well

• There are now two 
regions to consider, 
Region I and Region II

• Region I (V = 0)

• Region II (V =∞)
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Electrons in a Potential Well…continued

• where n = 1, 2, 3, ...
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Case III:  Electrons in a Finite Potential Well

• Finite Energy Barrier, V0

• Need two Schrodinger Equations 
for Region I and II

• Region I:  Free Electron

• Region II: Finite Barrier

0 x

V

V = 0

I. II.

v=v
0

v
0

0Em2
dx

d
I22

I
2

=ψ+
ψ

( )

xixi
II

II022
II

2

DeCe

0VEm2
dx

d

β−β +=ψ

=ψ−+
ψ

( )0
m2 VE2 −=β



8

Apply Boundary Conditions

• Considering E<V…

• This must behave at ∞…

• So it does exist inside the barrier!
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The Finite Barrier

x = -a x = +a
V = 0

V = V0

Solutions

• Region I

• Region II

• Region III
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Applying the Conditions

• At x=-a

• At x=+a
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We want to solve this for R and T and leave out A and B

Solving for T

• β<0 if we are below the barrier height…
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The Tunneling Probability

• Find the magnitude squared of T:

• At large values of γa,
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The Tunneling Probability
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