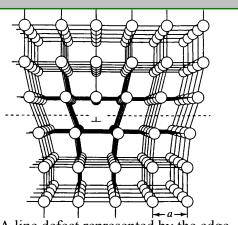

Defects in One Dimension (1D)

- (1D Defects) Dislocations and Slip
 - Edge, Screw, and Mixed
 - Burgers Vectors
 - Slip Systems
- (2D Defects)
 - Grains
 - Surfaces
- Slip
- **Resolving Stresses**
- Slip in Non-metals

Review of Chapter 4 (0D Defects)

TO MATERIALS SCIENCE

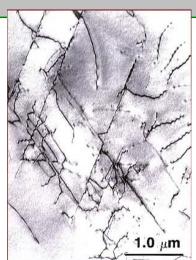
A Bad Match

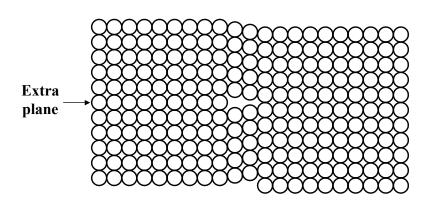

Experiment and Theory

Theory and Experiment Mismatch

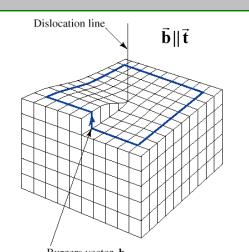
"Such a crystal, if perfect has a very high strength. Theoretically, it should be able to withstand a stress of 500,000 psi without permanently deforming. Moderately pure copper, however, has a yield stress far below it's theoretical strength, and can withstand only 1000 to 10,000 psi before it permanently changes shape (plastically deforms). If copper is purer, for example 99.999% pure, this makes the situation even worse. The yield stress can fall as low as a few hundred psi, a far cry from the theoretical value. This enormous discrepancy between the theoretical and the experimental strengths of copper was disconcerting to scientists until the 1930s, when they speculated that crystals were not perfect, but full of defects called dislocations."

Stephen Sass, "The Substance of Civilizations", Arcade Press, p.44

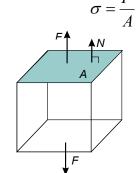

Line Defects—Edge Dislocation


A line defect represented by the edge of an extra half-plane of atoms

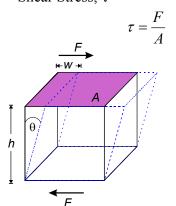
Microscopy of Dislocations

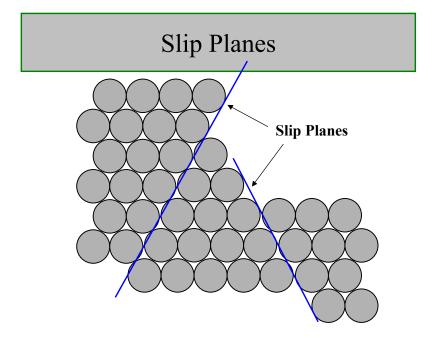

Dislocations in Al demonstrated in Transmission Electron Microscopy (TEM)

Quantifying Dislocations

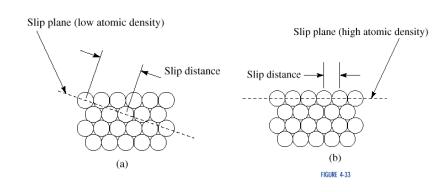


Screw Dislocation

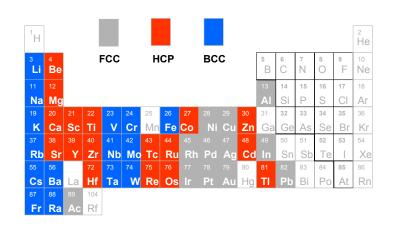


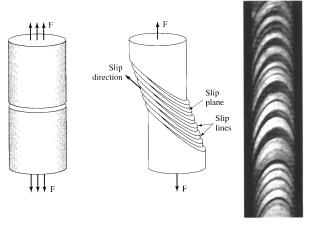

Stresses

Normal Stress, σ



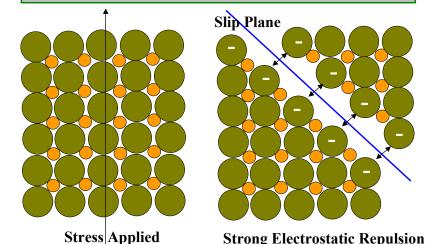
Shear Stress, τ




Why Along the Close Packed Directions?

Metal Crystal Structures

Dislocations + Stress + Slip = Plastic Deformation



Single crystal of zinc (hcp) stressed at 300°C

Summary of Slip in Metal Crystals

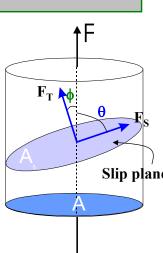
	НСР	FCC	ВСС
Close Packed?	Yes	Yes	No
Packing Efficiency	74%	74%	68%
Stacking Sequence of Close	ABABAB	ABCABC	n/a
Packed Planes			
# of unique, non-parallel slip	1	4	6
planes			
# slip directions in each	3	3	2
plane			
# of total slip systems	3	12	12
Ductile or Brittle?	Brittle	Ductile	Ductile
Atoms per cube	N/a, not a cube	4	2
Examples:	Mg, Zn	Al, Fe (austentite),	Fe (ferrite), W, Nb
		Au, Ag, Cu	

Why are Ceramics Brittle?

Summarizing Slip Systems

	Plane	Direction	Number
• FCC	{111}	$\langle {f 1} \overline{f 1} {f 0} angle$	12
• BCC	{110}	$\langle \overline{1}11 \rangle$	12
	{211}	$\langle \overline{1}11 \rangle$	12
	{321}	$\langle \overline{1}11 \rangle$	24
HCP	{0001}	$\left\langle 11\overline{2}0\right angle$	3
	$\{10\overline{1}0\}$	$\langle 11\overline{2}0 angle$	3
	$\{10\overline{1}1\}$	$\langle {f 11\overline{2}0} angle$	6

Resolving The Stress


 A_s = resolved area

 θ = angle to slip direction

 ϕ = angle to slip plane normal

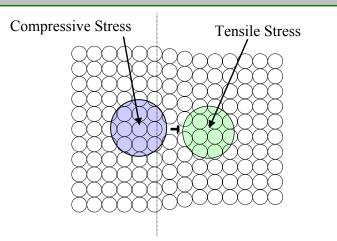
$$F_s = F \cos \theta$$
 $A_s = \frac{A}{\cos \phi}$

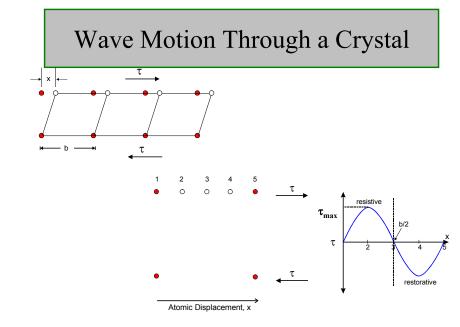
$$\frac{F_s}{A_s} = \frac{F}{A}\cos\theta\cos\phi$$

Resolved Stresses

- Slip occurs only on certain planes
- Resolved Shear Stress

Between slip direction and applied force

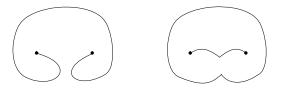

 $\tau_{R} = \sigma \cos \phi \cos \theta$ Applied stress


Between normal to slip plane and applied force

Critical Resolved Shear Stress

$$\sigma_{C} = \frac{\tau_{CR}}{\cos\phi\cos\theta}$$
 Property of the material

Lattice Energy



Multiplication of Dislocations

Frank-Read Sources

Dislocation densities are in per cm².

