Physics 260
Dr. Ingham

Name November 22, 2002

HOUR TEST #3

HONOR PLEDGE:

In completing this test, I have neither given nor received unauthorized assistance.

(signature)

This is a closed-book, closed-notes test. No written material is allowed.

You are permitted to use an electronic calculator only to assist with numerical work.

Assume that the given quantities are accurate enough to justify three (and only three) figures in your final answers.

> Show your work, especially on the problems! Credit, especially partial credit on problems where your final answer is incorrect, will depend on the work shown.

The test consists of 15 questions and 2 problems. Perfect score is 100. Questions 1-15 count 4 points each. (60%) Problems 1-2 count 20 points each. (40%)

Possibly useful information.

terrestrial acceleration due to gravity: $g = 9.80 \text{ m/s}^2$

 $\pi = 3.14159265$

e = 2.71828183

 $\log_{10}e = 0.43429448$

 $eV = 1.602 \times 10^{-19} J$

 $1 \text{ year} = 3.156 \times 10^7 \text{ sec}$

astronomical unit (AU) = $1.496 \times 10^{11} \text{ m}$

speed of light in vacuum:

 $c = 2.998 \times 10^8 \text{ m/s}$

constant of gravitation:

 $G = 6.673 \times 10^{-11} \text{ N-m}^2/\text{kg}^2$

Planck's constant:

 $h = 6.626 \times 10^{-34} \text{ J-s} = 4.136 \times 10^{-15} \text{ eV-s}$

"h-bar"

 $\hbar = h/2\pi = 1.055 \times 10^{-34} \text{ J-s} = 6.583 \times 10^{-16} \text{ eV-s}$

Boltzmann constant:

 $k = 1.381 \times 10^{-23} \text{ J/K} = 8.617 \times 10^{-5} \text{ eV/K}$

Avogadro's number

 $N_A = 6.022 \times 10^{23}$ particles/mole

Universal gas constant:

 $R = N_A k = 8.315 \text{ J/(mol-K)}$ Stefan-Boltzmann constant: $\sigma = 5.671 \times 10^{-8} \text{ W/(m}^2\text{K}^4)$

unified mass unit (dalton):

 $(1 \text{ u}) = 1.661 \times 10^{-27} \text{ kg}$

energy equivalent of 1 dalton: $(1u)c^2 = 1.493 \times 10^{-10} J = 931.9 \text{ MeV}$

proton (rest) mass:

 $m_p = 1.673 \times 10^{-27} \text{ kg}$

rest energy of proton:

 $m_p c^2 = 1.504 \times 10^{-10} J = 938.6 \text{ MeV}$

electron (rest) mass:

 $m_e = 9.109 \times 10^{-31} \text{ kg}$

rest energy of electron:

 $m_e c^2 = 9.187 \times 10^{-14} J = 0.5111 MeV$

elementary unit of charge:

 $e = 1.602 \times 10^{-19} C$

product of h and c:

 $hc = 1.987 \times 10^{-25} J-m = 1.240 \times 10^{-6} eV-m = 1240 eV-nm$

standard temperature:

T = 0 °C = 273.15 K

standard pressure:

P = 1.000 atmosphere = $1.013 \times 10^5 \text{ N/m}^2$

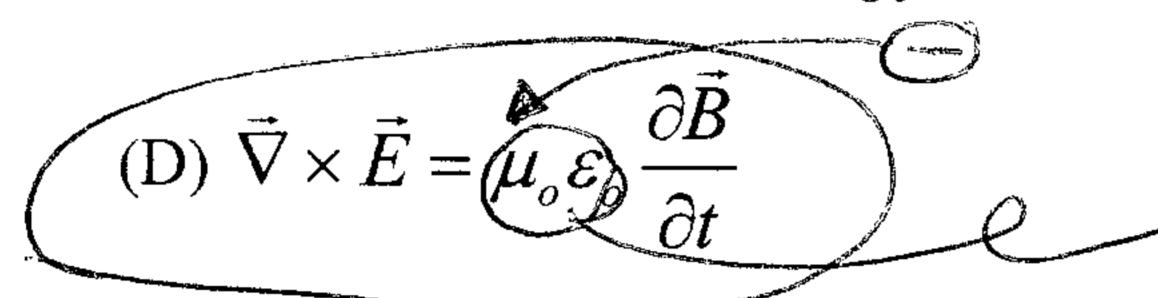
Questions 1-15. (4 points each) On most of these question You are not required to show your work.	s, partial credit is not available.	
Q1. The electrostatic field just outside the surface of a console. (A) is always zero (B) is always parallel to the surface. (C) is always perpendicular to the surface. (D) cannot be directed outward if the overall charge.		
(be millen)	Q1	
Q2. The SI unit for electric field can between as 1 N/C (or is equivalent to (A) 1 V/m ² (B) 1 V/m (C) 1 V (D) 1 V m (E) 1 V m ²	ne newton per coulomb). This Q2	
Q3. Write a correct SI unit for electric dipole moment.		
	Q3. C.m. or Coulomb-ineters	
Q4. How much electrostatic potential energy is stored who 5.00-microfarad capacitor is "charged up" to a potential display $P.E. = \frac{1}{2} \left(V^2 = \frac{1}{2} \left(5 \times 10^{-6} \right) \left(30.0 \right)^2 = 2$	nen an initially "uncharged" ifference of 30.0 volts? Q5 $x10^{-3}$ Q4. $25x10^{-3}$	
Q5. The magnitude of the electric field above a uniformly	charged infinite horizontal	
sheet the distance above the sheet	- -	
 (A) varies in direct proportion to (B) varies in inverse proportion to (C) varies directly as the square of (D) varies inversely as the square of (E) is independent of (F) varies directly as the logarithm of 		
(G) varies directly as the logarithm of	Q5	
Q6. Two capacitors ($C_1 = 8.00 \mu\text{F}$ and $C_2 = 6.00 \mu\text{F}$) are a What is the effective capacitance of this combination? Incapacitans answer. $C_{\text{Servis}} = \frac{C_1 C_2}{C_1 + C_2} = \frac{48}{14} \mu F = 3.00 \mu\text{F}$	clude correct units for your	

Q7. Write an expression for the power delivered to the resistor in terms of given quantities. DC Power = $V_0 I = V_0 \left(\frac{V_0}{R} \right)$ Q7	
Q8. Write an expression for the current density j in the resistor in terms of given quantities. $ \int \frac{1}{A} = \frac{1}{A} = \frac{\sqrt{\delta}}{AR} $ Q8. Q8. Q8.	
Q9. Carefully state Kirchoff's current law (KCL). Q9. The sum of the currents leaving any node is zero.	
Q10. A capacitor (C = 25.0 x 10^{-6} F) is initially "charged" to a potential difference of 50.0 volts. Then, beginning at time zero, the capacitor is "discharged" through a resistor of resistance R. The potential difference across the capacitor is found to vary with time according to $V_C(t) = (50.0 \text{ volts})e^{-\frac{t}{(0.200 \text{ sec})}}$. What is the value of the resistance? Include proper units. $RC = 0.200 \text{ sec} \implies R = \frac{0.200 \text{ sec}}{25.0 \times 10^{-6} \text{ F}} = 8000 \Omega$	
Q10. 8000 .Q_	
Q11.	

Q7-8. A constant potential difference Vo is applied to a cylindrical resistor that has cross-

sectional area A and total resistance R.

Q12. (True or False) In a propagating electromagnetic wave in vacuum, the electric field is always perpendicular to the magnetic field and one of the two fields is always parallel to the direction of propagation.


Q12. False

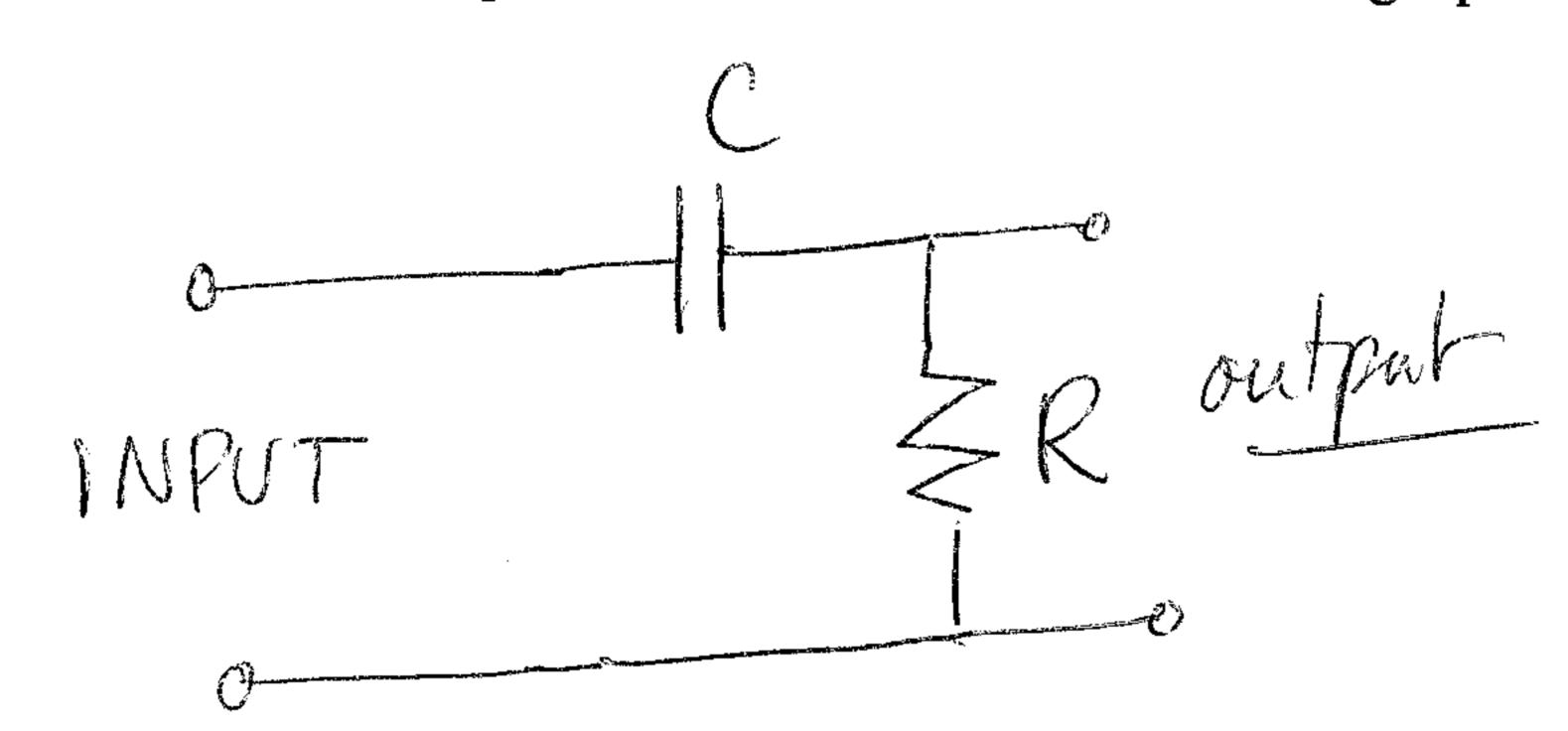
Q13. Which of the following is **NOT** the correct form of one of Maxwell's equations in differential form?

$$(\mathbf{A})\vec{\nabla}\cdot\vec{E} = \frac{\rho}{\varepsilon_o}$$

(B)
$$\vec{\nabla} \cdot \vec{B} = 0$$

(C)
$$\vec{\nabla} \times \vec{B} = \mu_o \vec{J} + \mu_o \varepsilon_o \frac{\partial \vec{E}}{\partial t}$$

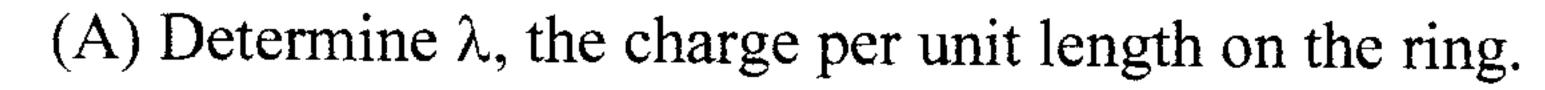
Q14. Express the complex number z = -6.00 + i(4.00) in exponential form:

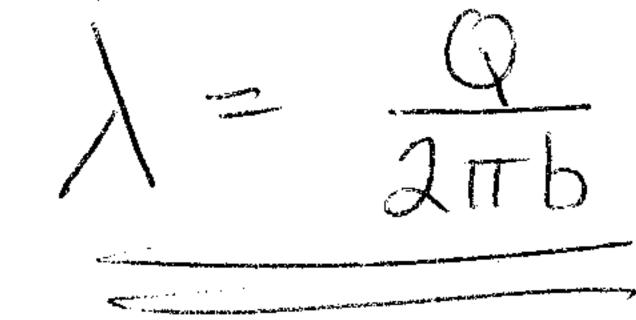

$$|\mathcal{Z}| = \sqrt{(-6)^2 + 4^2} = \sqrt{52} = 7.21$$

$$\theta = + an^{-1} \left(\frac{4}{-6}\right) + \pi = -0.588 + 3.142 = 2.554 \text{ ad}$$

$$i(2.55)$$

$$014. \sqrt{52} e$$


Q15. Draw and label a simple circuit that can be used as a high-pass filter.



Problem 1. (20 points) Show your work. Partial credit will depend on that.

Consider a circular ring of positive charge. The ring lies in the xy plane and the center of the ring is at the origin. The radius of the ring is b, and the total charge Q > 0 is uniformly distributed on the ring. Express your answers below in terms of Q, b, and physical constants.

(B) Using the usual convention that the electrostatic potential is zero at great (infinite) distance from the origin, what is the electrostatic potential V_{origin} at the center of the ring? Justify your answer.

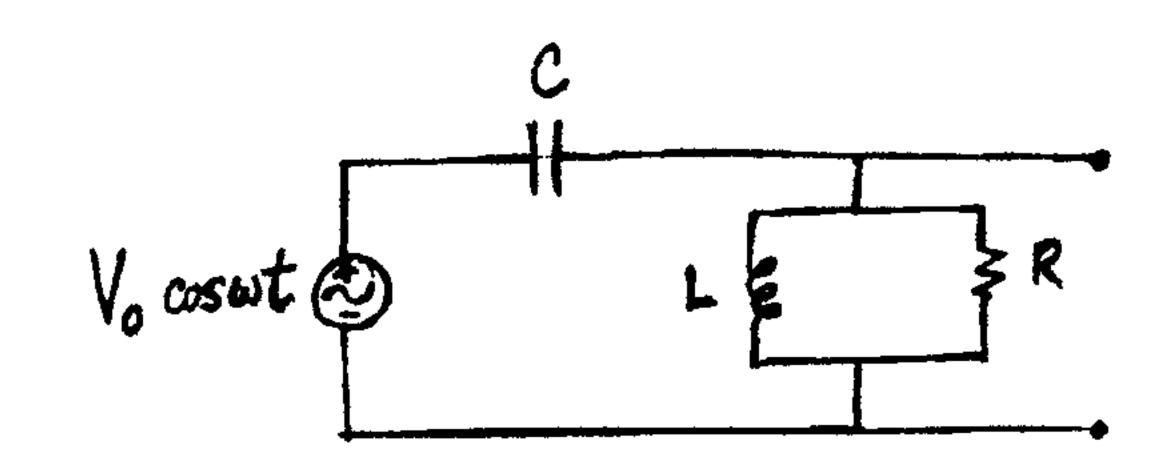
Since all of the charge is at the same distance (b) from the origin, $V_{\text{origin}} = \frac{1}{4\pi\epsilon_0} = \frac{Q}{V_{\text{origin}}}$

(C) Determine the electrostatic potential as a function of z along the z axis: V(0,0,z) = ? Justify your answer. Again, all parts of the ring are

at the same distance $(\sqrt{b^2+2^2})$ from the print $(0,0,\pm)$.

 $00 V(0,0,2) = \frac{Q}{4\pi\epsilon_0 \sqrt{b^2+2^2}}$

(Problem 1 continues on the next page.)


Problem 1. (continued)

(D) Use your answer to part (C) to determine the electric field $\mathbf{E}(\mathbf{r})$ for $\vec{r} = 0\hat{i} + 0\hat{j} + 3b\hat{k}$. Show your work and be sure to express the electric field as a vector.

By symmetry,
$$\vec{E}$$
 has only a \vec{z} component (as long)
Rs we stay on the \vec{z} axis).
So $\vec{E} = -\hat{k} \frac{\partial V}{\partial z} = -\hat{k} \left(\frac{Q}{4\pi\epsilon_0}\right) \frac{\partial}{\partial z} \left(\frac{(b^2+z^2)^{3/2}}{b^2+z^2}\right)^2$

$$= -\hat{k} \frac{Q}{4\pi\epsilon_0} \left[-\frac{1}{2} \frac{(2z)}{(b^2+z^2)^{3/2}}\right] = \hat{k} \frac{Q}{4\pi\epsilon_0} \frac{\vec{z}}{\sqrt{11160}}$$

$$\vec{E} = \hat{k} \frac{Q}{4\pi\epsilon_0} \frac{3b}{(10b^2)^{3/2}} = \hat{k} \frac{3}{10\sqrt{10}} \frac{Q}{4\pi\epsilon_0 b^2}$$

Consider the electric circuit shown above. Note that this is NOT a series RLC circuit! Give your answers for (A)-(C) below in terms of V_{09} , ω , C, L, and R and any necessary mathematical constants.

(A) What is the (complex) impedance Z_C of the capacitor? (Express it in <u>rectangular</u> form.)

$$Z_{c} = -i X_{c} = -i \left(\frac{i}{wc}\right)$$

(B) Determine the (complex) impedance Z_2 of the parallel LR combination. (Express your result in rectangular form.) $Z_2 = \frac{Z_1 Z_R}{Z_1 Z_R} = \frac{(i\omega L)R}{R}$

$$\frac{Z}{Z^{2}} = \frac{i\omega LR(R-i\omega L)}{R^{2}+(\omega L)^{2}} = \frac{R(\omega L)^{2}+\frac{i(\omega L)R^{2}}{R^{2}+(\omega L)^{2}}}{R^{2}+(\omega L)^{2}}$$

(C) Show that the (complex) impedance Z_{final} of the series combination of the capacitor

and the LR (parallel) combination is given by
$$Z_{final} = \frac{(\omega L)^2 R}{R^2 + (\omega L)^2} + i \left[\frac{(\omega L) R^2}{R^2 + (\omega L)^2} - \frac{1}{\omega C} \right]$$

Ship Combination \Rightarrow

$$Z_{final} = Z_C + Z_2 = \frac{(\omega L)^2 R}{R^2 + (\omega L)^2} + i \left[\frac{(\omega L) R^2}{R^2 + (\omega L)^2} - \frac{1}{\omega C} \right]$$

(Problem 2 continues on the next page.)

Problem 2. (continued)

(D) If the sinusoidal voltage source is represented by the phasor $\mathbf{V_o} = V_o e^{i\omega t}$ and the (rightward) current through the capacitor is represented by the phasor $\mathbf{I_o} = I_o e^{i(\omega t + \phi)}$, describe how to determine the magnitude I_o and phase constant ϕ of the current phasor. You do not need to actually determine their values.