Phy	sics	260
Dr.	Ingl	ıam

-	DOL
Name	760
October 25, 2	2002

HOUR TEST #2

HONOR PLEDGE:

In completing this test, I have neither given nor received unauthorized assistance.

This is a closed-book, closed-notes test. No written material is allowed.

You are permitted to use an electronic calculator only to assist with numerical work.

Assume that the given quantities are accurate enough to justify three (and only three) figures in your final answers.

> Show your work, especially on the problems! Credit, especially partial credit on problems where your final answer is incorrect, will depend on the work shown.

The test consists of 15 questions and 2 problems. Perfect score is 100. Questions 1-15 count 4 points each. (60%) Problems 1-2 count 20 points each. (40%)

Possibly useful information.

terrestrial acceleration due to gravity: $g = 9.80 \text{ m/s}^2$

 $\pi = 3.14159265$

e = 2.71828183

 $\log_{10}e = 0.43429448$

 $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$

 $1 \text{ year} = 3.156 \times 10^7 \text{ sec}$

astronomical unit (AU) = $1.496 \times 10^{11} \text{ m}$

speed of light in vacuum: $c = 2.998 \times 10^8 \text{ m/s}$

constant of gravitation:

 $G = 6.673 \times 10^{-11} \text{ N-m}^2/\text{kg}^2$

Planck's constant:

 $h = 6.626 \times 10^{-34} \text{ J-s} = 4.136 \times 10^{-15} \text{ eV-s}$

"h-bar"

 $\hbar = h/2\pi = 1.055 \text{ x } 10^{-34} \text{ J-s} = 6.583 \text{ x } 10^{-16} \text{ eV-s}$

Boltzmann constant:

 $k = 1.381 \times 10^{-23} \text{ J/K} = 8.617 \times 10^{-5} \text{ eV/K}$

Avogadro's number

 $N_A = 6.022 \times 10^{23}$ particles/mole

Universal gas constant:

 $R = N_A k = 8.315 \text{ J/(mol-K)}$

Stefan-Boltzmann constant: $\sigma = 5.671 \times 10^{-8} \text{ W/(m}^2\text{K}^4)$

unified mass unit (dalton):

 $(1 \text{ u}) = 1.661 \times 10^{-27} \text{ kg}$

energy equivalent of 1 dalton; $(1u)c^2 = 1.493 \times 10^{-10} J = 931.9 \text{ MeV}$

proton (rest) mass:

 $m_p = 1.673 \times 10^{-27} \text{ kg}$

rest energy of proton:

 $m_p c^2 = 1.504 \times 10^{-10} J = 938.6 \text{ MeV}$

electron (rest) mass:

 $m_e = 9.109 \times 10^{-31} \text{ kg}$

rest energy of electron:

 $m_e c^2 = 9.187 \times 10^{-14} J = 0.5111 MeV$

elementary unit of charge:

product of h and c:

 $e = 1.602 \times 10^{-19} C$

standard temperature:

T = 0 °C = 273.15 K

standard pressure:

 $P = 1.000 \text{ atmosphere} = 1.013 \times 10^5 \text{ N/m}^2$

 $hc = 1.987 \times 10^{-25} J-m = 1.240 \times 10^{-6} eV-m = 1240 eV-nm$

Q1-3. Consider a traveling pressure wave described by the $\Psi(x,t) = (1.20 \times 10^{-2} Pa) \cos[(5.00 rad/m)x - (1.80 \times 10^{-2} Pa)]$	
Q1. This wave is traveling in the (A) +x direction (B) -x direction (C) The direction of travel cannot be determined with	ithout additional information.
	Q1
Q2. What is the speed of this wave? (Include correct SI unit $V = \frac{\omega}{K} = \frac{1800 \text{ rad/s}}{5.00 \text{ rad/s}}$	its.)
	Q2. 360 m/s
Q3. What is the period of this wave? (Include correct SI un $\frac{2\pi}{1800} = \frac{2\pi vad}{1800}$	oits.) Q3. 3.49 × 10 ⁻³ s
Q4. Two sinusoidal waves are interfering to produce 5 bear sinusoidal waves has a frequency of 440 Hz. What are the	ats per second. One of the
Q5. At T = 273 K, a metal bar has a length of 2.00 m. Whe $T = 223$ K, its length shrinks by 1.50×10^{-3} m. Determine expansion for this metal, including appropriate SI units.	
$\alpha = \frac{1}{2 \Delta T} = \frac{1}{2.00 \text{m}} \frac{(-1.50 \times 10^{-3} \text{m})}{(-50 \text{ k})}$	
	Q5. 1.50 X 10 5 K
Q6. What is the defining characteristic of a thermal reservo	<u>oir?</u>
It is a system with such a large	heat capacity
that its temperature is unaffected	
transfer in or out of the resen	. # \ \ #

Questions 1-15. (4 points each) On most of these questions, partial credit is not available.

You are not required to show your work.

Q7. In the equation $\frac{\delta Q}{dt} = -kA \frac{dT}{dx}$, what are the correct S	Lunits for the quantity 1/2
$\int \frac{dt}{dx} = \left[\frac{dt}{m^2} \right] \left(\frac{E}{m} \right) \rightarrow \left[\frac{1}{m^2} \right] =$	walls in / K
Sec	Q7. m. K. Co. in. s. is
Q8. In the quasi-static adiabatic expansion of an ideal gas	, the entropy of the gas
(A) increases (B) decreases (C) remains the same (D) This cannot be determined without additional	information.
	Q8
Q9. Both helium (atomic mass 4.00) and argon (atomic mass 4.00) argon (atomic mass 4.00) argon (atomic mass 4.00) argon (atomic mass	ne ratio of the average speed of 3.16
	Q9. 3 1)
Q10. In the simplest model of a monatomic solid, there are per atom. On the basis of this model, the predicted molar solume) of the solid is	pecific heat (at constant
(B) 6R (C) 9R (D) 12R (D) 12R 3. Wietic + 3 pot 2	Q10
Q11. In a typical diatomic gas at room temperature, the adibecause at this temperature there are 5 active degrees of free these 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active degrees of freedom are of each of the types because 5 active 6 ac	edom. Indicate how many of
Q11. t	ranslational:
\mathbf{I}	otational: <u>2</u>
	vibrational:

Q12. Define in words the efficiency of a heat engine (not need this is the ratio of work output to	ecessarily a Carnot engine). Migh-Hemselahune
heat in out.	
Q13. (TRUE OR FALSE) If a gas is taken quasi-statically a (cycle) in the PV plane, the integral of ratio of heat added to zero: $\oint \frac{\delta Q}{T} = 0$.	
$m{J}$	Q13. TRUE
Q14. Identify each of the following variables as <u>intensive</u> (in <u>extensive</u> (proportional to size):	ndependent of size) OR
Q14.	pressure in tensive
	entropy <u>extensive</u>
	temperature in Husive
	density <u>Mfensive</u>
Q15. (TRUE OR FALSE) In thermodynamic equilibrium, a equally likely.	
	Q15. HALSE
(all micro states are equally l	Tikely)
Not all macrostates	

Problem 1. (20 points) Show your work. Partial credit will depend on that.

A cyclic heat engine that operates between a highest temperature of 800 K and a lowest temperature of 300 K has a work output of 5.40 megajoules (MJ) per cycle and rejects waste (low-temperature) heat of 7.20 MJ per cycle.

(A) If the power output (work output per unit time) of this heat engine is 400 kilowatts (kW), what is the duration of one cycle?

$$(400 \text{ kW}) \times \Delta t = W = 5.40 \times 10^3 \text{ kJ}$$

$$\Rightarrow \Delta t = \frac{5400 \text{ kJ}}{400 \text{ kW}} = \frac{13.5 \text{ sec}}{400 \text{ kW}}$$

(B) What is the heat input per cycle?

t is the heat input per cycle?
$$Q_{H} = M + |Q_{C}| = 5.40 \text{ MJ} + 7.20 \text{ MJ}$$

$$= |Q_{A}| = |Q_{A}| + |Q_{C}| + |$$

(C) What is the efficiency of this heat engine?

$$\frac{Z}{Q} = \frac{W}{Q_{H}} = \frac{5.40 \text{ MJ}}{12.6 \text{ MJ}} = 0.429 = 42.9\%$$

(D) If a Carnot engine could be used between a hot reservoir of 800 K and a cold reservoir at 300 K, how much work output per cycle could it achieve given the same heat input found in part B?

Wearnot =
$$\mathcal{E}_{carnot}Q_{H} = \left(\frac{T_{H}-T_{C}}{T_{H}}\right)\left(12.6\,\text{MJ}\right)$$

= $\left(1-\frac{300}{800}\right)\left(12.6\,\text{MJ}\right) \simeq 7.88\,\text{MJ}$

Problem 2. (20 points) Show your work. Partial credit will depend on that.

Neon gas (which is monatomic) is confined at a pressure $P_o = 1.00 \times 10^4$ pascals and a temperature $T_o = 800 \text{ K}$. The volume occupied by the gas is $V_o = 1.00 \text{ m}^3$.

(A) Find the number of moles of neon gas.

$$PV = nRT \implies N = PV = \frac{(1.00 \times 10^4 \text{ Parials})(1.00 \text{ m}^3)}{(8.315 \text{ J})(800 \text{ K})}$$

= 1.50 moles

(B)-(C) This gas undergoes an isobaric compression to volume $V_1 = 0.500 V_0$.

(B) What is the gas temperature T_1 at the completion of this isobaric compression?

$$\frac{P}{NR} = cot \Rightarrow T = cot \Rightarrow T_{0} = T_{0} \Rightarrow T_{1} = T_{0} \left(\frac{V_{1}}{V_{0}}\right)$$

$$T_{1} = 400 \text{ K}$$

(C) During the isobaric compression, does the entropy of the neon gas increase, decrease, or remain the same?

<u>Ucalla</u> Explain your choice. both V ξ

decrease => both the spatial disorder + the durinder of motion decrease

Problem 2. (continued)

- (D)-(E) Following the isobaric compression described above, the gas is allowed to expand quasi-statically and adiabatically from V_1 to $V_2 = 2.000V_1 = V_0$.
- (D) What is the gas temperature T_2 at the completion of the adiabatic expansion?

$$PV = cot \Rightarrow TV = cot$$

$$T_1 V_1^{2/3} = T_2 V_2^{2/3}$$

$$PV'' = cst \Rightarrow TV'' = cst'$$

$$T_1 V_1^{2/3} = T_2 V_2^{2/3}$$

$$T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{2/3} = (400 \text{ K})(0.500)^{2/3} = 252 \text{ K}$$

(E) How much work is done by the gas during the adiabatic expansion?

$$\Rightarrow W_{\text{exp}}^{\text{exp}} = -\Delta V ad = -n C_V (T_2 - T_1)$$

ad exp =
$$-(1.50)(\frac{3}{2})(8.315)$$
 $(252-6)$

$$W_{by} = 2.769 \times 10^3 \text{ J} = 2.77 \text{ W}$$