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Reese Ch. 27, Part B 
(pp. 1257-1261)

• Requirements for Theory of Particle-Waves

• Characteristics of the Wavefunction

• The Loss of Classical Determinism
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Reminder: Observation and Measurement

• Within classical physics, it is assumed possible when 
observing a system to either make the disturbance 
negligible or else to account for it precisely.

• In the domain of quantum physics (where the 
Heisenberg uncertainty products can’t be ignored), 
the very act of measurement changes the system in 
ways that cannot be accounted for precisely.  In 
general, the predictions of quantum mechanics have 
to be expressed in statistical (probabilistic) terms.
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Requirements for a Theory of Particle-Waves

• The wavefunction should be “large” where the 
particle is likely to be detected and “small” where the 
particle is not likely to be detected.

• The theory must incorporate the de Broglie relation:

• Theory must incorporate the fact that low-flux (“one 
particle-at-a-time”) experiments reveal the same 
diffraction pattern as high-flux experiments.
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Characteristics of the Wavefunction Ψ: I

• Amplitude of Ψ must determine likelihood of particle 
detection.

• Wavefunction Ψ must be able to interfere with itself 
in order to yield the observed diffraction pattern.

• Wavefunction Ψ must represent the behavior of 
individual particles because even low-flux 
experiments yield the diffraction pattern. 

• It would be “nice” if we could use the wavefunction
Ψ to calculate the results of any experiment we 
choose to perform. (We must accept the fact that, in 
general, the predictions will be statistical ones.)
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Characteristics of the Wavefunction Ψ: II
• Probabilities are inherently non-negative; to get the 

required destructive interference, the wavefunction Ψ
must not be restricted to non-negative numbers.

• We are accustomed to thinking of waves of definite 
wavelength as real sinusoids, but a definite-
momentum wavefunction Ψ can’t be a real sinusoid if 
it is to represent a particle that is equally likely to be 
found anywhere along the “beam path.”

• We can satisfy these two requirements by using a 
complex exponential for a definite-momentum wave 
function. . .
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Characteristics of the Wavefunction Ψ: III
• The wavefunction for a particle of definite 

momentum            will be written as:

• The likelihood of finding the particle at any given 
location is given by                 :

• A particle of definite momentum is equally likely to be 
found anywhere along the beam.
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Characteristics of the Wavefunction Ψ: IV
• Since it is complex-valued, the wavefunction 

is not directly observable.  Rather, it is a 
function (THE function) that we can use to 
predict numbers (necessarily real) which can 
be checked experimentally.

• The wavefunction Ψ is also referred as the 
probability amplitude, because its squared 
magnitude is the probability per unit distance 
∆x.
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Characteristics of the Wavefunction Ψ: V
• By analogy with the physics of classical waves, we 

expect that the wavefunction Ψ satisfies a linear 
wave equation.

• This equation (to be developed later) is 
nonrelativistic: it applies to a particle of nonzero 
mass m and kinetic energy much less than mc2.

• One clue about this equation comes from de Broglie’s 
analysis.  If we consider a free particle and assign it 
zero potential energy, then E = p2/2m.  Then
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The Loss of Classical Determinism
• Newtonian physics was developed to analyze the 

behavior of macroscopic objects.  In retrospect, the 
fact that its categories fail to capture the details of 
behavior at the microscopic level should not be 
surprising.

• It is startling to realize that we can neither neglect 
“the disturbance caused by observation” nor take it 
into account and thereby preserve strict determinism.
(Thankfully,  quantum mechanics does still maintain 
causality in a limited sense.)

• Of course, in a practical sense, Newtonian physics 
remains a fine, fine theory of behavior as long as our 
tolerances are much coarser than the limits imposed 
by the uncertainty principles.


