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Reese Ch. 14, part B
(pp. 649-658)

• Degrees of Freedom and Equipartition
• Specific Heat of a Solid
• Quantum Effects 
• Adiabatic Processes
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Degrees of Freedom
• In advanced mechanics, the number of degrees 

of freedom of a system is the number of 
independently specifiable coordinates.  However, 
in discussions of thermal physics, the number of 
degrees of freedom of a system is the 
number of different terms that must be 
added up to obtain the energy of the 
system. For example, each “molecule” in a 
monatomic gas has 3 degrees of freedom, 
corresponding to 2 2 21 1 1
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Equipartition of Energy
• One mole of a monatomic gas has 3NA degrees of freedom.
• An important concept in thermal physics is the theorem of 

equipartition of energy: that in equilibrium the total energy 
of the system is divided equally among all its degrees of 
freedom. (There are limitations on this theorem, the most 
important of which is that only the active degrees of 
freedom share in the equipartition.)

• Since a monatomic gas has a total energy of 
each degree of freedom accounts for 
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Specific Heat of a Monatomic Solid: I
• In the simplest model of an monatomic solid, there 

are 6 active degrees of freedom per atom: 3 kinetic-
energy terms and 3 quadratic potential-energy terms.  
The molar specific heat at constant volume should 
therefore be

• This “law of Dulong and Petit” was discovered 
experimentally in the early 1800’s.
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Specific Heat of a Monatomic Solid: II
• The law of Dulong and Petit does not apply to molecular solids, 

and it does not even apply to monatomic solids at very cold 
temperatures. This reflects the fact that the rule of 
equipartition only applies to active degrees of freedom.

• Understanding the low-temperature behavior of the specific 
heat of a monatomic solid requires the use of “quantum 
statistical mechanics,” in which the quantum mechanical nature 
of atomic and molecular systems is incorporated. Albert Einstein
and Peter Debye did such work soon after the development of 
quantum mechanics.

• The failure of classical statistical mechanics to account for low-
temperature specific heats of atomic solids is just one of its 
failures.  Other serious failures occur with gases ….
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Don’t Atoms Rotate?: I
• A classical picture of a monatomic ideal 

gas would presumably assign a tiny but 
finite radius to each individual atom.  
Such atoms should be capable of 
rotation, and each rotational degree of 
freedom should have           of energy. 
This would make the molar specific heat 
twice as big as it is measured to be!
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Don’t Atoms Rotate?: II
• This conundrum is resolved by quantum mechanics, according 

to which the atom consists of a nucleus surrounding by a cloud 
of electrons.  Although electrons (and nuclei) do have angular 
momentum, quantum mechanics reveals that only certain 
angular momentum values are allowed, and that these allowed 
“states” correspond to certain definite energy values that are 
separated by energies large compared to kT for typical 
laboratory temperatures. 

• Therefore these intra-atomic degrees of freedom are not active 
but are frozen out at ordinary temperatures. At sufficiently 
high temperatures, electronic excitations can contribute to the 
internal energy (and therefore to the specific heats). 
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Diatomic Gases: Rotation
• The transition from quantum freezing to classical equipartition 

can be seen in the behavior of the specific heat of a diatomic 
gas.  Because a diatomic gas has a nonnegligible moment of 
inertia about two axes, it should have 2 rotational degrees of 
freedom, so its molar specific heat “should be”

• At low temperatures the specific heat of a 
typical diatomic gas is found to be only 1.5R,
but as the gas is warmed toward room temperature, the specific 
heat climbs to 2.5R.  

• This occurs when as kT gets large enough compared to the 
(temperature-independent) spacing between the adjacent 
rotational levels.
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Diatomic Gases: Vibration
• At even higher temperatures, 2 more degrees of freedom thaw 

out: these are the kinetic energy and potential energy of 
molecular vibration, in which the “spring” (the bond between 
the two atoms of the molecule) is alternately stretched and 
compressed.

• When kT gets to be larger than the spacing of adjacent 
molecular quantum states, the molar specific heat of a diatomic 
gas rises from 2.5R to 3.5R, corresponding to 7 active degrees 
of freedom per molecule.

• The vibrational thawing occurs at a higher temperature than the 
rotational thawing, with the exact transition temperatures 
depending on the masses of the two atoms, their equilibrium 
separation (bond length), and the stiffness of the spring (bond).
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Polyatomic Gases
• The details for polyatomic molecules are complicated 

by the presence of multiple “springs” (atom-atom 
bonds), but again the specific heat rises as rotational 
degrees of freedom (how many?) and then 
vibrational degrees of freedom thaw out as the 
temperature is raised.

• At room temperature, the molar specific heat cV of a 
typical polyatomic molecule is between greater than 
3R.
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Adiabatic Processes
An adiabatic process is one in which 
there is zero heat transfer between the 
system and its surroundings. This 
means that the internal energy change 
equals the negative of the work done 
by the system on its surroundings:

byU W∆ = −
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Adiabatic Expansion: Ideal Gas: I
• When a gas expands adiabatically, its internal energy 

an amount equal to the PdV work done by the gas on 
its surroundings. A careful analysis shows that it an 
(infinitesimal) adiabatic expansion of an ideal gas, 
the temperature obeys

and the pressure obeys

Here                    the ratio of specific heats. Note: 
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Adiabatic Expansion: Ideal Gas: II
• In a finite adiabatic expansion, as long as the specific 

heats remain constant throughout the expansion, the 
equations for dT and dP on the previous slide can be 
integrated to give:

• The specific heats ratio γ is often referred to as the 
adiabatic exponent. 

• STP values of γ:  5/3=1.67 for helium; 7/5=1.40for N2
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