= e
T —
\%& - — >

——
Reese Ch. 14, part B
(pp. 649-658)

 Degrees of Freedom and Equipartition
» Specific Heat of a Solid

e Quantum Effects

« Adiabatic Processes
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Degrees of Freedom

e In advanced mechanics, the number of degrees
of freedom of a system is the number of
independently specifiable coordinates. However,
in discussions of thermal physics, the number of
degrees of freedom of a system is the
number of different terms that must be
added up to obtain the energy of the
system. For example, each “molecule” in a
monatomic gas has 3 degrees of freedom
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Equipartition of Energy

. One mole of a monatomic gas has 3N, degrees of freedom.

e Animportant concept in thermal physics is the theorem of
equipartition of energy: that in equilibrium the total energy
of the system is divided equally among all its degrees of
freedom. (There are limitations on this theorem, the most
important of which is that only the active degrees of
freedom share in the equipartition.) 3

e  Since a monatomic gas has a total energy of ENAkT
each degree of freedom accounts for
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Specific Heat of a Monatomic Solid: I

o In the simplest model of an monatomic solid, there
are 6 active degrees of freedom per atom: 3 kinetic-
energy terms and 3 quadratic potential-energy terms.
The molar specific heat at constant volume should
therefore be
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« This “law of Dulong and Petit” was discovered
experimentally in the early 1800’s.
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Specific Heat of a Monatomic Solid: II

o The law of Dulong and Petit does not apply to molecular solids,
and it does not even apply to monatomic solids at very cold
temperatures. This reflects the fact that the rule of
equipartition only applies to active degrees of freedom.

« Understanding the low-temperature behavior of the specific
heat of a monatomic solid requires the use of “quantum
statistical mechanics,” in which the quantum mechanical nature
of atomic and molecular systems is incorporated. Albert Einstein
and Peter Debye did such work soon after the development of
quantum mechanics.

» The failure of classical statistical mechanics to account for low-
temperature specific heats of atomic solids is just one of its
failures. Other serious failures occur with gases ....
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Don’t Atoms Rotate?: I

« A classical picture of a monatomic ideal
gas would presumably assign a tiny but
finite radius to each individual atom.
Such atoms should be capable of
rotation, and each rotational degree of
freedom should have —kT  of energy.

This would make the molar specific heat
twice as big as it is measured to be!
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Don’t Atoms Rotate?: II

e This conundrum is resolved by quantum mechanics, according
to which the atom consists of a nucleus surrounding by a cloud
of electrons. Although electrons (and nuclei) do have angular
momentum, quantum mechanics reveals that only certain
angular momentum values are allowed, and that these allowed
“states” correspond to certain definite energy values that are
separated by energies large compared to KT for typical
laboratory temperatures.

» Therefore these intra-atomic degrees of freedom are not active
but are frozen out at ordinary temperatures. At sufficiently
high temperatures, electronic excitations can contribute to the
internal energy (and therefore to the specific heats).
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Diatomic Gases: Rotation

« The transition from quantum freezing to classical equipartition
can be seen in the behavior of the specific heat of a diatomic
gas. Because a diatomic gas has a nonnegligible moment of
inertia about two axes, it should have 2 rotational degrees of
freedom, so its molar specific heat “should be” 5

o At low temperatures the specific heat of a Cy = ER
typical diatomic gas is found to be only 1.5R,
but as the gas is warmed toward room temperature, the specific
heat climbs to 2.5R.

« This occurs when as kT gets large enough compared to the
(temperature-independent) spacing between the adjacent
rotational levels.
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Diatomic Gases: Vibration

« At even higher temperatures, 2 more degrees of freedom thaw
out: these are the kinetic energy and potential energy of
molecular vibration, in which the “spring” (the bond between
the two atoms of the molecule) is alternately stretched and
compressed.

« When KT gets to be larger than the spacing of adjacent
molecular quantum states, the molar specific heat of a diatomic
gas rises from 2.5R to 3.5R, corresponding to 7 active degrees
of freedom per molecule.

« The vibrational thawing occurs at a higher temperature than the
rotational thawing, with the exact transition temperatures
depending on the masses of the two atoms, their equilibrium
separation (bond length), and the stiffness of the spring (bond).
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Polyatomic Gases

» The details for polyatomic molecules are complicated
by the presence of multiple “springs” (atom-atom
bonds), but again the specific heat rises as rotational
degrees of freedom (how many?) and then
vibrational degrees of freedom thaw out as the

temperature is raised.

« At room temperature, the molar specific heat c, of a
typical polyatomic molecule is between greater than
3R.

Adiabatic Processes

An adiabatic process is one in which
there is zero heat transfer between the
system and its surroundings. This
means that the internal energy change
equals the negative of the work done
by the system on its surroundings:

AU =W,
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Adiabatic Expansion: Ideal Gas: I

« When a gas expands adiabatically, its internal energy
an amount equal to the PdV work done by the gas on
its surroundings. A careful analysis shows that it an
(infinitesimal) adiabatic expansion of an ideal gas,
the temperature obeys

dr dv

= —(}/ — 1)7
r 4 dP__dv
and the pressure obeys ? ==y 7

Here the ratio of specific heats. Note: y > 1
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Adiabatic Expansion: Ideal Gas: II

« In a finite adiabatic expansion, as long as the specific
heats remain constant throughout the expansion, the
equations for dT and dP on the previous slide can be
integrated to give:

TV’ =constant =T}
PV7 = constant'=PV;”

» The specific heats ratio v is often referred to as the
adiabatic exponent.
e STP values of y: 5/3=1.67 for helium; 7/5=1.40for N,
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