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Reese Ch. 16, Part A
(pp. 733-744)

• Review: Coulomb’s Law 
• Review: Electric Field & Superposition
• Electric Field due to Continuously 

Distributed Charges
• Motion in Uniform Electric Fields
• Gauss’s Law for Electric Fields
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Review: Coulomb’s Law: I

• Between 1600 and 1751, investigators such as 
Gilbert, Dufay, and Franklin established that there 
are two kinds of charge and that like charges 
repel one another while unlike charges attract.

• In the 1780’s, about a century after Newton 
published the Principia but more than a decade 
before Cavendish’s experiment to determine G, 
Charles Coulomb, established that concentrated 
electric charges interact via an inverse square 
force.
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Review: Coulomb’s Law: II

• Using modern units, this can be summarized by 
writing

• The constant εo is called the “permittivity of free 
space.” In SI units, the coefficient in Coulomb’s 
law is
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Review: Electric Field 
• In the neighborhood of a fixed charge Q, the force on a 

concentrated (“point”) charge is proportional to its electric 
charge q.  For this and other reasons, it is very useful to think 
of Q as producing a “field” around it.  

• At any given location r, this field is defined as the ratio of the 
force to charge that Q exerts on a positive “test” charge q: 

• NOTES: 
– (1) We have located the origin at Q for simplicity.
– (2) The field points radially outward (inward) if Q > 0 (Q <0).
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Review: Superposition
• Experiments show that electric forces obey the law of 

superposition: the force on a test charge in the 
presence of several fixed charges is given by the 
vector sum of the “individual” forces. 

• Because the electric field is just the force divided by 
the test particle’s charge, this superposition also 
applies to the electric field.  Given an array of fixed 
charges qn at locations rn, the electric field is:
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Electric Field Due to 
Continuously Distributed Charges

• In many practical situations, electric fields are 
produced by very many charges that are individually 
of small magnitude.  (Avogradro’s number is 6.02 x 1023 & 
the elementary charge is 1.60 x 10-19 coulombs!)

• In this case, the superposition law becomes an 
integral over all of the contributing charge:

• The only way to really understand this is to practice!!
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Motion in Uniform Electric Fields
• If no magnetic fields are present and if we ignore the 

tendency of the test charge to radiate as it 
accelerates, a test particle moving in an electrostatic 
field (the field created by given fixed charges) is 
subject to an instantaneous force qE[r(t)], so 
Newton’s 2nd Law gives:

• Note that if the electric field is uniform, then the test 
particle exhibits constant 
acceleration, so that 
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Gauss’s Law for Electric Fields
• By analogy with the gravitational case, we should 

expect that the net flux of the electric field through 
any closed surface is proportional to the net electric 
charge in the volume enclosed by the surface:

• For highly symmetric charge distributions, Gauss’ law 
can be used to determine the electric field pattern.
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Reese Ch. 16, Part B
(pp. 744-751)

• Using Gauss’s Law to Find Electric Fields
– Single Isolated Point Charge
– Infinitely Long Uniformly Charged Line
– Inside a Uniformly Charged Solid Sphere
– Uniformly Charged Infinite Sheet

• Conductors: Electric Fields and Charge
• Semiconductors and Superconductors
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Gauss’s Law: Single Isolated Point Charge

• Spherical symmetry
– Rationale for radially directed field
– Rationale that field strength depends only on r 

• What Gaussian surface to choose?
– A centered spherical surface (obviously!?)
- Then
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Gauss’s Law: 
Infinitely Long Uniformly Charged Line: I

• Cylindrical Symmetry
– Rationale for zero azimuthal field

• Infinite Length and Uniform Charge
– Rationale for field strictly “radial”
– Rationale for field strength only depending on 

the “perpendicular radius” r
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Gauss’s Law: 
Infinitely Long Uniformly Charged Line: II

• Gaussian surface:  coaxial circular cylinder
Then
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Gauss’s Law: Uniformly Charged Solid Sphere

• Spherical symmetry
– Rationale for radially directed field
– Rationale that field strength depends only on r

• Gaussian surface: concentric sphere
– If r>R, then but if r<R
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Gauss’s Law:
Uniformly Charged Infinite Sheet: I

• Planar symmetry (with sheet = the xy plane)

– Rationale for field along ±z axis

– Rationale that strength could only depend on 
|z|

– Rationale that field either points “outward” on 
both sides or “inward” on both sides
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Gauss’s Law: 
Uniformly Charged Infinite Sheet: II

• Choose Gaussian surface to be a right 
cylinder with axis along z and bisected by 
xy plane.  Then

• N.B.: Field strength INDEPENDENT of |z|!!
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Conductors
• A conductor is a material in which there are 

plenty of charge carriers (electrons) that can 
quickly move in response to any macroscopic
electric field.

• This rapid internal rearrangement of charge 
“shorts out” any applied electric field, so …

• The (macroscopic) electrostatic field MUST BE 
ZERO everywhere inside a conductor.
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The Interior of a Conductor
• Consider any (macroscopic) region of space whose 

surface lies inside a conductor.  
• We apply Gauss’s Law to this region and conclude 

that the net charge enclosed is zero.
• Since this is true for any region in the conductor’s 

interior, we conclude that the electric charge density 
must be zero everywhere inside a conductor.

• In a conductor that is charged and or polarized, the 
only place where charges can reside is on the surface 
of the conductor.
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Electric Field Just Outside 
the Surface of a Conductor: I

• The electrostatic field just inside the surface is 
ZERO.

• The electrostatic field is a conservative field: the 
line integral of “E dot ds” is zero around any closed 
path.
– This implies that the tangential component of the field 

just inside and the tangential component of the field just 
outside the surface must have the same value.  

• Therefore, the electric field just outside a conductor 
must be perpendicular to the surface!
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Electric Field Just Outside 
the Surface of a Conductor: II

• The electrostatic field just inside the surface is 
ZERO.

• Construct a tiny Gaussian pillbox
– infinitesimal thickness
– diameter small compared to distance along the surface 

over which the charge density varies
– midplane IS the surface

• Then Gauss’s Law implies
that the field just outside is: local
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Semiconductors and 
Superconductors

• Semiconductors (important examples are germanium 
and silicon) are materials in which there is a relatively 
small energy gap  (less than 2 eV) between the 
“valence band” and the “conduction band.” At room 
temperature, these materials are neither good 
conductors nor good insulators.  

• Superconductors are materials which lose all 
electrical resistance when cooled below a critical 
temperature TC.  Examples include the element 
mercury (TC= 4.2 K) and the compound YBa2Cu3O7, 
for which TC= 92 K (which is “warmer” than liquid 
nitrogen!).


