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Reese Ch. 16, Part A
(pp. 733-744)

» Review: Coulomb’s Law
» Review: Electric Field & Superposition

« Electric Field due to Continuously
Distributed Charges

e Motion in Uniform Electric Fields
o Gauss'’s Law for Electric Fields
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Review: Coulomb’s Law: I

« Between 1600 and 1751, investigators such as
Gilbert, Dufay, and Franklin established that there
are two kinds of charge and that like charges
repel one another while unlike charges attract.

« Inthe 1780's, about a century after Newton
published the Principia but more than a decade
before Cavendish’s experiment to determine G,
Charles Coulomb, established that concentrated
electric charges interact via an inverse square
force.
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Review: Coulomb’s Law: II

e Using modern units, this can be summarized by

writing 1 ‘ql ‘ ‘qz ‘
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e The constant ¢, is called the “permittivity of free
space.” In SI units, the coefficient in Coulomb’s

lawis 1 _¢gq, N
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Review: Electric Field

« In the neighborhood of a fixed charge Q, the force on a
concentrated (“point”) charge is proportional to its electric
charge g. For this and other reasons, it is very useful to think
of Q as producing a “field” around it.

« At any given location r, this field is defined as the ratio of the
force to charge that Q exerts on a positive “test” charge q:

! qQJ; 19,

dreg, 1

* NOTES:
- (1) We have located the origin at Q for simplicity.
- (2) The field points radially outward (inward) if Q > 0 (Q <0).
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Review: Superposition
» Experiments show that electric forces obey the law of
superposition: the force on a test charge in the
presence of several fixed charges is given by the
vector sum of the “individual” forces.
o Because the electric field is just the force divided by
the test particle’s charge, this superposition also
applies to the electric field. Given an array of fixed
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Electric Field Due to
Continuously Distributed Charges

« In many practical situations, electric fields are
produced by very many charges that are individually
of small magnitude. (Avogradro’s number is 6.02 x 102 &
the elementary charge is 1.60 x 10-*° coulombs!)

« In this case, the superposition law becomes an
integral over all of the contributing charge:

charges q, at locations r,, the electric field is: - 1 dqg To—Ty,
1 F—r )= 4re, I i _7 | “ v ‘
E(F): L_};") 0 ‘r/’_rdq‘ "p rdq
4, "’ —1 * The only way to really understand this is to practice!!
Physics 260 Fall 2003 Chapter 16 5 Physics 260 Fall 2003 Chapter 16 6
p TR e v TR e =

Motion in Uniform Electric Fields

« If no magnetic fields are present and if we ignore the
tendency of the test charge to radiate as it
accelerates, a test particle moving in an electrostatic
field (the field created by given fixed charges) is
subject to an instantaneous force gE[r(t)], so
Newton's 2nd Law gives: | . ¢ - _

a=—E[F(1)]
m

« Note that if the electric field is uniform, then the test

particle exhibits constant q B ,
acceleration, so that F(O)=F+Vt+ Tn:f
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Gauss'’s Law for Electric Fields

« By analogy with the gravitational case, we should
expect that the net flux of the electric field through
any closed surface is proportional to the net electric
charge in the volume enclosed by the surface:
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closed o
surface

« For highly symmetric charge distributions, Gauss' law
can be used to determine the electric field pattern.
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Reese Ch. 16, Part B
(pp. 744-751)

» Using Gauss's Law to Find Electric Fields
- Single Isolated Point Charge
- Infinitely Long Uniformly Charged Line
- Inside a Uniformly Charged Solid Sphere
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Gauss'’s Law: Single Isolated Point Charge

e Spherical symmetry

- Rationale for radially directed field

- Rationale that field strength depends only on r
» What Gaussian surface to choose?

- A centered spherical surface (obviously!?)

- Uniformly Charged Infinite Sheet - Then

» Conductors: Electric Fields and Charge E.dS :( 7 .’;>X(4ﬂ_r2) :g: B :[ 1 jgf
. 2
» Semiconductors and Superconductors closed & 4re, )r

surface
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Gauss’s Law:
Infinitely Long Uniformly Charged Line: I

e Cylindrical Symmetry
- Rationale for zero azimuthal field

o Infinite Length and Uniform Charge
- Rationale for field strictly “radial”

- Rationale for field strength only depending on
the “perpendicular radius” r

Gauss’s Law:
Infinitely Long Uniformly Charged Line: II

o Gaussian surface: coaxial circular cylinder
Then
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Gauss's Law: Uniformly Charged Solid Sphere

e Spherical symmetry

- Rationale for radially directed field

- Rationale that field strength depends only on r
« Gaussian surface: concentric sphere

- Ifr>R then z_[_1 |Q. butifr<R
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Gauss’s Law:
Uniformly Charged Infinite Sheet: 1

e Planar symmetry (with sheet = the xy plane)

- Rationale for field along %z axis

dre ) 1? - Rationale that strength could only depend on
’ 4
- . o ] — 1 . ] ] ] )
_[ E.-ds = ( . r) x (4zr’) = o =FE= Q—:r - Rationale that field either points “outward” on
cloed g, 4re, ) R both sides or “inward” on both sides
surface
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Gauss’s Law:
Uniformly Charged Infinite Sheet: II Conductors

o Choose Gaussian surface to be a right
cylinder with axis along z and bisected by
xy plane. Then

L']U..\'['d E . dg - 0 - |:(Eabow ' kA) + (_Eabova : _kA)] (Aend) = %:nd
surface
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* N.B.: Field strength INDEPENDENT of |z|!!

» A conductor is a material in which there are
plenty of charge carriers (electrons) that can
quickly move in response to any macroscopic
electric field.

« This rapid internal rearrangement of charge
“shorts out” any applied electric field, so ...

» The (macroscopic) electrostatic field MUST BE
ZERO everywhere inside a conductor.
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The Interior of a Conductor

» Consider any (macroscopic) region of space whose
surface lies inside a conductor.

« We apply Gauss'’s Law to this region and conclude
that the net charge enclosed is zero.

« Since this is true for any region in the conductor’s
interior, we conclude that the electric charge density
must be zero everywhere inside a conductor.

« In a conductor that is charged and or polarized, the
only place where charges can reside is on the surface
of the conductor.
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Electric Field Just Outside
the Surface of a Conductor: I

» The electrostatic field just inside the surface is
ZERO.

» The electrostatic field is a conservative field: the
line integral of “E dot ds” is zero around any closed
path.

- This implies that the tangential component of the field
just inside and the tangential component of the field just
outside the surface must have the same value.

» Therefore, the electric field just outside a conductor
must be perpendicular to the surface!
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Electric Field Just Outside
the Surface of a Conductor: II

» The electrostatic field just inside the surface is
ZERO.

« Construct a tiny Gaussian pillbox
- infinitesimal thickness

- diameter small compared to distance along the surface
over which the charge density varies

- midplane IS the surface
o Then Gauss's Law implies
that the field just outside is:

_ O-Ia('al
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Semiconductors and
Superconductors

« Semiconductors (important examples are germanium
and silicon) are materials in which there is a relatively
small energy gap (less than 2 eV) between the
“valence band” and the “conduction band.” At room
temperature, these materials are neither good
conductors nor good insulators.

« Superconductors are materials which lose all
electrical resistance when cooled below a critical
temperature T.. Examples include the element
mercury (T.= 4.2 K) and the compound YBa,Cu;0;,
for which Te= 92 K (which is “warmer” than liquid
nitrogen!).
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