= e
T —
\%& - — >

——
Reese Ch. 17, Part A
(pp. 774-786)

« Review: Electrostatic Force
and Electrostatic Potential Energy
« Review: Electrostatic Field
and Electrostatic Potential
¢ Electric Potential due to
Continuously Distributed Charges
« Equipotential Surfaces and Volumes
« Field as the Negative Gradient of the Potential
« Motion of a Charge in E Field and the electron-volt
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Review: Electrostatic Force
and Electrostatic Potential Energy

* The force on a test charge due to a static
distribution of other electric charges is a
conservative force, so that it is possible to define
a corresponding electrostatic potential energy:

f
PE(#,)= PE(F) = [ F,, +d7

e NOTES:
(1) Note the minus sign in the definition.

(2) The equation above only determines changes
in potential energy. The reference location (at
which PE = 0) is a matter of choice.
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Review: Electrostatic Field
and Electrostatic Potential

* The force on a test particle equals test particle’s
charge TIMES the local electrostatic field: | = q B

F‘elec
* Hence we can define an electrostatic potential V
by saying that the change in electrostatic PE is
just the test particle’s charge times the change in
the electrostatic potential. This implies that:

A
V() =V () = E-dF

* Note minus sign and free choice of reference.
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SI Unit for Electric Potential

» The SI unit for electric potential is called the
volt. It is equal to the SI unit of energy
divided by the SI unit of charge:

1 volt =1 joule/coulomb = 1V=1]J/C
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« NOTE: Be aware that the abbreviation for this
unit (a capital V) is also commonly used as
the variable name for electric potential!
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Superposition Law for Electric Potential

o The law of (vector) superposition for electric fields
implies a (scalar) superposition law for electric
potential.

» NOTE: In order to easily determine the reference
(V=0) position when potentials are added, it's good
practice to use the same reference position for all
terms in the sum. For example, if we have a set of
several fixed charges and adopt the choice that V=0

for r—oo, then
’ _ 1
Ir(r) 2 Qn
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Electric Potential due to
Continuously Distributed Charges

« When the charges are distributed continuously, the
superposition law takes the form of an integral:

V()= 1 a0
4re,

r—rdQ‘

o RESTRICTION: The above equation can be used
only when the charge distribution is confined to a
bounded region. With infinitely extended
distributions, we must calculate the electric field and

47215‘(J . V- ;7;1 then integrate the field to find potential differences.
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Equipotential Surfaces and Volumes

» From the definition of the electric potential in terms
of the electric field, we find:

V(F +di) -V (F)=dV = —E(F)edF

« This means that starting from any position vector r,
the neighboring points r + dr that have the same
potential are those for which Eedr =0 :

(1) If the local field is nonzero, this defines
an equipotential surface.
(2) If the local field is zero, then there can be

a 3-D equipotential volume.
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Field as Negative Gradient of Potential: I

« For any function of position, the directional derivative
is defined by

df (v,n) _ lim{f(FJrﬁAS)_f(F)}

ds As—0 As

« It is tedious but not difficult to show that:

df (r,n) — e ;1+]g+1€g Eﬁ'ﬁf
ds ox "0y Oz

« Vf is called the gradient of the function f.
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Field as Negative Gradient of Potential: II Acceleration of Charges by
« Examining how the electric field is related to Electrostatic Fields
the potential function, and » Newton’s 2" Law provides:
o comparing that with how the gradient of f is - - "
related to f, we conclude that the electric field ma=F  =qE=—qVV
is nothing but the negative gradient of the
electric potential: « It is easy to use this to derive:
L7 — V(7 1 1
E(r)=-VV(7) —mvi+qV, =—mv’ +qV,
2 f f 2 i i
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An auxiliary energy unit: the electron-volt Reese Ch. 17: part B
(pp. 786-795)
» An electron-volt is the kinetic energy increase « Review: An Electric Dipole & its Field
exhibited by an electron when its electric potential )
increases by one volt. (Notice that since the electron (pp. 728-733)

has a negative charge, it is accelerated in the
direction of increasing electric potential — opposite
the direction in which the field points.)

» Since the magnitude of the charge on an electron is
1.602x107C , we have

1 electron—volt= 1eV=1.602x10"J

An Electric Dipole in an External Field
Electric Potential due to a Dipole
Using Potential to find the Field of a Dipole

Potential Energy of an Assembly of Point
Charges

« Lightning Rods
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Review: An Electric Dipole and Its Field

* An electric dipole consists of two charges
of equal magnitude |Q| but opposite sign
separated by a relatively short distance d.

+ The dipole moment p of a dipole is a
vector with magnitude |Q| times d,
located midway between the charges, and
pointing from the negative charge toward
the positive one.

e Forr >>d, |E| varies inversely as r3.
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An Electric Dipole in an External Field

« If an electric dipole is placed in a uniform
external electric field E, there is zero net
force on the dipole (Why?).

« There is a net torque on the dipole:

(Note that because the net force is zero, this
expression for the torque is correct for any choice of
coordinate origin.)

» In a non-uniform electric field, a dipole
suffers both a torque and a net force. (Why?)

Phy:

=
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Electric Potential due to a Dipole

+ Atradii r >> d, the electric potential due to a dipole
p = (|Q|d)k  centered at the origin is given
to a very good approximation by:

|Q] dcos® 1 pcost
=

2

Vdipole (V, 0) =

4re, r Are, r

* Notes:
- (1) Here the referenceisV > 0 asr - «.
- (2) 0is the colatitude (angle between r and +z)
- (3) For given r, how does V vary with 6?
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Using the Potential to Find the Field
E(F)=-VV(F)
In spherical polar coordinates,

\Y Efg-l‘élafﬁ'@ 1 g
or rod rsiné Og

- [{222) 222
dre r r

o
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Potential Energy of an Assembly . .
of Point Charges Lightning Rods

» Using Coulomb’s law, the work required to bring two
charges near each other (from infinite separation) is:
w

. ZA(PE)Z 1 QIQZ — 1 QIQ2

assemble 47[80 | }72 - i’i | 472'6‘0 4

« With infinite mutual separation as the zero for PE, we

can generalize to N charged particles:
i i 09,
; T

pro L33 90
7 o i=l j=i+l ij

1
dre, T Tl I —r| Are
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» These are among the many useful inventions
of Benjamin Franklin.

» They work because:

- (1) The magnitude of the electric field immediately
surrounding a conducting object is greatest where
the object is “sharpest” (has smallest radius of
curvature).

- (2) Air breaks down (ionizes) and provides a
conducting path when the field exceeds a certain
critical value (about 3 x 106 N/C = 3 x 10% V/m).
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