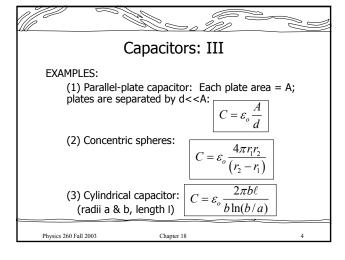


Reese Ch. 18

(Sections 6-11 = pp. 813-825)

- Capacitors
- Series & Parallel Combinations of Capacitors
- Energy Storage in a Capacitor
- Electrostatics in Dielectrics (= Insulators)
- Use of Dielectrics in Capacitors
- Dielectric Breakdown


Physics 260 Fall 2003

Capacitors: I

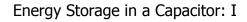
- A capacitor is a circuit element that can store (separated) charge and electric potential energy.
- In most capacitors, the separated opposite electric charges are equal in magnitude.
- Ideally, once a capacitor is "charged" it can "hold its charge" indefinitely. Real capacitors "leak."
- The capacitance C of a capacitor is the ratio of the magnitude of separated charge to the (magnitude of the) potential difference:

Physics 260 Fall 2003

Capacitors: II NOTES: (1) The capacitance is positive by definition. (2) Capacitance unit = farad (F): 1 farad = 1 coulomb/voltIn a "vacuum capacitor" (one that is free of dielectric materials), the capacitance is determined by the size, shape, and separation of the plates. Physics 260 Fall 2003 Chapter 18

Series and Parallel Combinations of Capacitors

 When capacitors are connected in parallel, they have the same voltage but the stored charge is the sum of the individual stored charges, so


$$C_{\substack{equiv\\(parallel)}} = C_1 + C_2$$

 When capacitors are connected in series, they store equal charges, but the voltage across the assembly is the sum of individual voltages, so

$$C_{\substack{equiv\\(series)}} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1}$$

Physics 260 Fall 2003

Chapter 18

- If given the opportunity to "discharge," a charged capacitor can do a lot of work (wreak a lot of havoc!). Evidently a charged capacitor stores potential energy in the separated charges.
- Taking a completely discharged capacitor as the reference state and carefully calculating the work necessary to separate the charges, we find:

$$PE = \int_{0}^{Q} V(q) dq = \int_{0}^{Q} \frac{q}{C} dq = \frac{Q^{2}}{2C} = \frac{1}{2}CV^{2}$$

Physics 260 Fall 2003

Chapter 18

Energy Storage in a Capacitor: II

 It is possible to express the energy stored in a capacitor as a volume integral of electric energy density: (Why do it?)

$$PE = \int_{\substack{all \\ space}} \left(\frac{1}{2} \varepsilon_o \vec{E} \cdot \vec{E}\right) d(volume) \equiv \int_{\substack{all \\ space}} \left(\frac{1}{2} \varepsilon_o E^2\right) dV$$

 This is easily shown for a parallel-plate capacitor. (Try it!) It turns out to be a valid result for any vacuum capacitor.

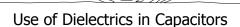
Physics 260 Fall 2003

Chapter 18

Electrostatics in Dielectrics (=Insulators)

- The vacuum equations that we have been using can also be applied in the presence of many dielectric materials provided that we replace ε_0 by ε , the permittivity of the material. A dielectric material is often characterized by its dielectric constant κ :
- Notice that κ is dimensionless.

Some k values:


 $\kappa \equiv \frac{\varepsilon}{\varepsilon_o}$

Rubber: ~3; Pyrex: 5.6; H₂O: 80

Physics 260 Fall 2003

Chapter 18

8

- When a vacuum capacitor is "filled" with a dielectric material, its capacitance is multiplied by κ, implying more energy stored per volt.
- This is due to **polarization** of the dielectric, which produces a <u>bound-charge surface density</u> at each plate. Each bound-charge surface density is opposite in sign to the adjacent "free-charge surface densities":

$$\sigma_{bound} = -\left(\frac{\kappa - 1}{\kappa}\right)\sigma_{free}$$

Physics 260 Fall 2003 Chapter 18

- If a dielectric material is subjected to a sufficiently strong electric field (typically a few million to a few hundred million volts per meter), the atoms and molecules in the material can lose their outer electrons.
- These liberated electrons can collide with other atoms and molecules, knocking loose still more electrons. The result is that the material temporarily becomes a conductor.
- **Lightning** is the meteorological dielectric breakdown of air.

Physics 260 Fall 2003 Chapter 18 10