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Reese Ch. 21 
(Sects. 4-5 = pp. 965-971)

• 3 Important Theorems Involving “Del”
• Integral Form of Maxwell’s Equations
• Differential Form of Maxwell’s Equations
• Maxwell’s Equations 

away from Charges and Currents
• Propagating Wave Solutions
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Important Theorems Involving Del: I

The gradient theorem:

2 1
any path
 (1 2)

( ) ( ) ( )f r f r f r dr

→

 − = ∇ ⋅ ∫
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Important Theorems Involving Del: II

The divergence theorem:

closed enclosed
surface volume

( ) ( )u r dS u r dV ⋅ = ∇ ⋅ ∫∫ ∫∫∫
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Important Theorems Involving Del: III

Stokes’ theorem (= the curl theorem):

closed any bounded
curve surface (open)

( ) ( )u r dr u r dS ⋅ = ∇× ⋅ ∫ ∫∫
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Integral Form of Maxwell’s Equations: I

Gauss’s Law for the electric field:

net enclosed

closed enclosed
surface volume

1( ) ( )
o o

QE r dS r dVρ
ε ε

⋅ = =∫∫ ∫∫∫

Physics 260 Fall 2003 Chapter 21 6

Integral Form of Maxwell’s Equations: II

Gauss’s Law for the magnetic field:

closed
surface

( ) 0B r dS⋅ =∫∫
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Integral Form of Maxwell’s Equations: III

The Ampere-Maxwell Law:

closed
curve

( ) ( )o DB r dr I Iµ⋅ = + ⇒∫

any bounded SAME bounded
surface (open) surface (open)

closed
curve

( ) o o o
dB r dr J dS E dS
dt

µ µ ε
   
   ⋅ = ⋅ + ⋅   
      

∫ ∫∫ ∫∫
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Integral Form of Maxwell’s Equations: IV

Faraday’s Law of Induction:

any bounded
surface (open)

closed
curve

( ) dE r dr B dS
dt

 
 ⋅ = − ⋅ 
  

∫ ∫∫
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Differential Form of Maxwell’s Equations: I

Gauss’s Law for the electric field:

closed enclosed
surface volume

( ) ( )   u r dS u r dV ⋅  ⇒= ∇ ⋅∫∫ ∫∫∫

net enclosed

closed enclosed
surface volume

combined with1( ) ( )  
o o

QE r dS r dVρ
ε ε

⋅ = =∫∫ ∫∫∫

( , )( , )
o

r tE r t ρ
ε

∇ ⋅ =
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Differential Form of Maxwell’s Equations: II

Gauss’s Law for the magnetic field:

( , ) 0B r t∇ ⋅ =

closed enclosed
surface volume

( ) ( )   u r dS u r dV ⋅  ⇒= ∇ ⋅∫∫ ∫∫∫

closed
surface

( ) 0 combined withB r dS⋅ =∫∫
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Differential Form of Maxwell’s Equations: III

The Ampere-Maxwell Law:

any bounded SAME bounded
surface (open) surface (open)

closed
curve

 combin( ed with) o o o
dB r dr J dS E dS
dt

µ µ ε
   
   ⋅ = ⋅ + ⋅   
      

∫ ∫∫ ∫∫

closed any bounded
curve surface (open)

( ) ( )u r dr u r dS ⋅ = ∇× ⋅  ⇒∫ ∫∫

( , )( , ) ( , )o o o
E r tB r t J r t
t

µ µ ε ∂
∇× = +

∂
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Differential Form of Maxwell’s Equations: IV

Faraday’s Law of Induction:

( , )( , ) B r tE r t
t

∂
∇× = −

∂

closed any bounded
curve surface (open)

( ) ( )u r dr u r dS ⋅ = ∇× ⋅  ⇒∫ ∫∫

any bounded
surface (open)

closed
curve

 combined with( ) dE r dr B dS
dt

 
 ⋅ = − ⋅ 
  

∫ ∫∫
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Maxwell’s Equations in vacuum
(away from Charges and Currents)

I. Gauss E

II: Gauss B

III: Ampere-Maxwell

IV: Faraday ( , )( , ) B r tE r t
t

∂
∇× = −

∂

( , ) 0E r t∇ ⋅ =

( , ) 0B r t∇ ⋅ =

( , )( , ) o o
E r tB r t
t

µ ε ∂
∇× =

∂

Physics 260 Fall 2003 Chapter 21 14

Propagating Wave Solutions: I
Notice that the permittivity εo and the permeability µo
appear in the third equation as the product µοεο. 
What is its SI value?

( )

2
7 12

2

2
16

2 2

1/ 2 8

(4 10 ) (8.854 10 )

10.1113 10  

where the constant 2.998 10

o o

o o

o o

T m C
A N m

s
m c

mc
s

µ ε π

µ ε

µ ε

− −

−

−

⋅
= × × ×

⋅

⇒ = × ≡

≡ = ×

Physics 260 Fall 2003 Chapter 21 15

Propagating Wave Solutions: II
I. Gauss E

II: Gauss B

III: Ampere-Maxwell

IV: Faraday ( , )( , ) B r tE r t
t

∂
∇× = −

∂

( , ) 0E r t∇ ⋅ =

( , ) 0B r t∇ ⋅ =

2
1 ( , )( , ) E r tB r t
c t

∂
∇× =

∂
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Propagating Wave Solutions: III
• These equations allow many solutions –

let’s look for the simplest of them.
– Assume that the fields only depend on ONE 

spatial coordinate, which we choose to be x.
– Assume that the electric field has zero x and z 

components: 

– Assume that the magnetic field has zero x and 
y components:

ˆ( , ) ( , )yE r t jE x t=

ˆ( , ) ( , )zB r t kB x t=
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Propagating Wave Solutions: IV
I. Gauss E

II: Gauss B

III: Ampere-Maxwell

IV: Faraday y zE B
x t

∂ ∂
⇒ = −

∂ ∂

0 0⇒ =

0 0⇒ =

2

1 yz EB
x c t

∂∂
⇒ − =

∂ ∂
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Propagating Wave Solutions: V
• Differentiate III with respect to t and 

IV with respect to x:
III:

IV: 2 2

2
y zE B

x x t
∂ ∂

⇒ = −
∂ ∂ ∂

22

2 2

1 yz EB
t x c t

∂∂
⇒ − =

∂ ∂ ∂
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Propagating Wave Solutions: VI
• Mathematical theorem: Second-order 

mixed-partial derivatives are equal, so . . .

• BINGO!

• This is “the wave equation”, for which the 
solution is

where f(u) & g(u) are arbitrary functions.

2 2

2 2 2
1y yE E

x c t
∂ ∂

⇒ =
∂ ∂

( , ) ( ) ( )yE x t f x ct g x ct= − + +
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Propagating Wave Solutions: VII
• If we choose g=0, then we get a rightward 

moving wave:

• If we choose f=0, then we get a leftward moving 
wave:

• NOTE:   E x B gives the direction of propagation

1

andˆ ˆ( , ) ( , ) ( ) 
ˆ ˆ( , ) ( , ) ( )

y

z

E x t jE x t jf x ct

B x t kB x t kc f x ct−

= = −

= = + −

1

andˆ ˆ( , ) ( , ) ( ) 
ˆ ˆ( , ) ( , ) ( )

y

z

E x t jE x t jg x ct

B x t kB x t kc g x ct−

= = +

= = − +


