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Reese Ch. 25, Part Al

(Sects. 1-4 = pp. 1149-1160)

» Reference Frames & Galilean Relativity
 Galilean Transformation Equations between
Two Inertial Frames
- Transformation of Time and of Coordinates
- Transformation of Velocities
- Transformation of Acceleration
« Invariance of Speed of Light is Incompatible
with Galilean Relativity
« Time Dilation
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Reference Frames

« A reference frame consists of a
coordinate system and a distributed set of
synchronize clocks.

e An inertial (reference) frame is a
reference frame in which Newton'’s first
law (the law of inertia) is satisfied.

- Both Galilean relativity and special
(Einsteinian) relativity relate observations
made by “inertial observers.”

- In special relativity, as in Newtonian physics,
any inertial observer is in uniform translation
motion with respect to any other inertial
observer.
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Galilean Relativity: I

» The basic equations of a relativity theory are
transformation equations, which express
the time and space coordinates of any “point
event” in one reference frame in terms of
the time and space coordinates of the same
event in another reference frame.

» To obtain a definite set of equations, we
make the (standard) assumption that frame
S’ moves with constant velocity v =vi  with
respect to frame S.
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Galilean Relativity: II

+ We also assume that:
- the x’ axis of S’ coincides with the x axis of S
- the y’ & y axes and the z' & z axes are parallel
- the point event defined by the momentary
coincidence of the origins O and O’ has t=0.

» The basic Galilean transformation equations

are then: t'=t
x'=x—-wvt
y'=y
z'=z
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Galilean Relativity: III Galilean Relativity: IV
» We can derive the velocity * The acceleration
transformation equations . dx transformation equations -
from the coordinate U =—=u,—-v are obtained by taking one a = duf =a v —a
transf ti ti dt more time derivative. We oodt odt 7
ranstformation equations. ' dy' find that a particle’s ’ du
The results are: u, = 7 u, acceleration in frame S’ a,=— r=a,
(These were used 4 just equals that in frame S. tv
extensively in solving . dz (Would this still be true if 4 = du. _
“relative motion” u,= _t =u, one of the frames were odr
i inertial?
problems in PHYS 240.) noninertial?)
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Invariance of Speed of Light

« Maxwell’s equations predict a speed for
electromagnetic waves that matches the measured
speed of light.

« By analogy with sound waves, Maxwell and his
contemporaries assumed that light waves must travel
in some “medium” and that the speed predicted in
his equations is the speed of electromagnetic waves
with respect to that medium (called the “ether”).

o BUT ... many experiments have shown that light
travels with the same speed with respect to EVERY
inertial observer, regardless of the motion of the light
source or the observer! This means Galilean relativity
is simply wrong when high speeds are involved.
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The Postulates of Special Relativity

In 1905, Albert Einstein created a “new

relativity” (special relativity) on the basis of
two postulates:

(1) Not just the laws of mechanics, but all of
the laws of physics look the same in every
inertial frame of reference.

(2) Among these laws are Maxwell's
equations, which implies that speed of
electromagnetic waves has the same value in
every inertial frame of reference.
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Immediate Consequence: Time Dilation

« On the basis of these two postulates and the
assumption (to be validated in the next lecture) that
relative motion of two inertial frames does NOT affect
lengths which are perpendicular to the relative motion,
we can show that any moving clock “runs slow” when
compared with the series of clocks past which it is
moving. (Yikes!!)

« To be more precise, if two point-events
are measured in S’ to occur at the same
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Reese Ch. 25, Part A2
(Sects. 5-10 = pp. 1160-1171)
» Transformation of Lengths:
- Transverse Lengths are Unaffected
- Longitudinal Lengths are Contracted
(Moving meter sticks are shortened.)

« Lorentz Transformation Equations for

place and a time interval At apart, the |\, __ A Time and Space Coordinates
observer S will measure the time interval | N « Relativity of Simultaneity
as: - .
¢’ « The Twin Paradox
Physics 260 Fall 2003 Chapter 25, Part A 9 Physics 260 Fall 2003 Chapter 25, Part A 10
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Transformation of Lengths: I

«  We consider the possibility that we mistakenly
assumed that the transversely oriented “laser
clocks” had the same length when moving as at
rest.

o If we assume that transverse lengths of moving
objects are stretched, we soon find a logical
contradiction.

o If we assume that transverse lengths of moving
objects are compressed, we also find a logical
contradiction.

o Inescapable conclusion: Transverse dimensions
are unaffected by motion.
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Transformation of Lengths: II

o  The time dilation effect ("moving clocks run
slow”) implies that a radioactive particle “lasts
longer” as reckoned in the “lab” reference frame
S through which it is moving than it does in its
own rest frame S'.

«  Since the two frames are in relative motion with
an agreed-upon relative speed v, this means
observer in S’ must reckon a smaller value than S
does for the distance between the lab location
where the particle was produced and the lab
location where the particle decayed. In other
words, the (longitudinal) lab distance is
“contracted” when observed from the frame S'.
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Transformation of Lengths: III

» In summary, a object which is a cube of length L,
in its rest frame and which is oriented with its
edges parallel to the coordinate axes. . .

(1) . .. also has transverse dimensions equal to
L, as reckoned in a reference frame through
which it is moving, but . . .

(2) has a longitudinal dimension (as reckoned in a
reference frame through which it is moving) that
is smaller by the factor y:
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The Lorentz Transformation Equations: I

» In seeking the special-relativistic equations that
replace the Galilean transformation equations, we
want to preserve the feature that unaccelerated
motion in frame S corresponds to unaccelerated
motion in frame S’. (Why?) This implies that the
transformation equations be linear.

« The fact that transverse lengths are unaffected by
motion suggests that we keep the Galilean

1
L=L where y=— ? ) [
g v transformation equations for y and z: y =y
I } z'=2z
Hence we use the phrase length contraction.
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The Lorentz Transformation Equations: II

« For the transformation of the longitudinal space
coordinate (x) and the time coordinate (t), we can
expect: x’ = Ax+Bt. But from the facts that (1) the
origin of S’ coincides with the origin of S at S-time =
0 (thatis, t = 0) and (2) the origin of S’ moves
rightward through S at speed v, we find B = -Av.

e Thus we have x' = Ax-Avt=A(x-vt). We know that
for v<<c, A—1. (Why?)

+ We also know that x = A(X'+vt’). (Why?)
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Lorentz Transformation Equations: III

« By thinking carefully about length contraction, we
can conclude that A=y. Then one can use

x'=y(x—vt) and x = y(x'+vt") to find an equation
fort'interms of xand t: | VX
t'=y(t- ?)

o In preparing to summarize the transformation N
equations, it is helpful to introduce the symbol| f =—
c

for the ratio of the relative speed v to the
speed of light.
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Lorentz Transformation Equations: IV

o The Lorentz transformation from S to S’ is:
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Lorentz Transformation Equations: V

o For the inverse Lorentz transformation from S’ to S,
we simply replace B by —B:

X= =) A
x=y(x'+ Bc
y'=y '
Z‘ =z y - y
o
ct'=y(ct — Bx) =z ' '
where 1 ct=y(ct'+ px")
_V - 2\72
p= - and y=(1-47) ° The definitions of B and y are unchanged.
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The Relativity of Simultaneity

» In Newtonian physics, two events that are
simultaneous in one reference frame are also
simultaneous in every other reference frame:
simultaneity is a “Galilean absolute.”

e The Lorentz transformation from t to t" makes it clear
that two events which are simultaneous in frame S
are not necessarily simultaneous in frame S":

cAt' = y(cAt — PAx)
cAt =y (cAt'+ PAx")

 In other words, simultaneity is NOT a “Lorentz
absolute.”

The Twin “Paradox”

« The Lorentz transformation equations maintain a
complete reciprocity between the frames S and S'.
Through observations in either frame, one can
conclude that the other frame’s “moving clocks” run
slow and its “moving (longitudinal) meter sticks” are
contracted.

o Thus it is surprising to learn that a careful analysis of
a hypothetical high-speed long-distance round trip by
one member of a pair of twins predicts a difference in
the twins’ ages at the end of the trip! However, while
unexpected, this result is not a real paradox: rational
observers in both frames can do analyses that agree.
What's more, experiments support the prediction!
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Reese Ch. 25, part A3 Lorentz Transformation of Velocity: I
(Sects. 11-15 = pp. 1171-1180) e Suppose that observers S and S’ both keep track
) ) of the motion of a particle P.
» Lorentz Transformation of Velocity o Observer S determines that the particle’s position
(aka Relativistic Velocity Addition) as a function of time t is given by:
« Observing (Measuring) vs. Seeing 7o (t) = fxp 0+ ]'yp () + /gzp 0
- Apparent Shape & Color of High-Speed Objects _ _ .
_ The Optical Tllusion of Superluminal Speed e Observer S’ determines that the particle’s position
o p. P P as a function of time t' is given by:
 Relativistic Doppler Effect e A
- Radially Receding or Approaching Source () =i'x,(t)+ J'yp(t) +k'z,(t")
- Passing Source (*Transverse Doppler Effect”) «  What velocities do the observers ascribe to P?
- General Case (“Oblique View")
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Lorentz Transformation of Velocity: II
e According to S, the particle’s velocity at time t is:

dry (1)
dt

ﬁp(t) =

e According to S, the particle’s velocity at time t' is:

dr (1)

()= 2

e How are the velocity components related?
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Lorentz Transformation of Velocity: III

« To relate the velocity components obtained in the
two different frame, (1) recall that each velocity
component is the limit of a ratio such as Ax/At,
and (2) Lorentz-transform the space and time

intervals: Ax' = ]/(AX—VAI)
Ay'=Ay
Az'=Az

At'z;/(At— VAfj
C
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Lorentz Transformation of Velocity: IV Lorentz Transformation of Velocity: V
. — u (t+v
(1= 0 u (=0
. . ' vu, (t) . vi, (1)

e This process provides 1-——= e« To get the inverse I+—5—=
the desired Lorentz ¢ transformation, wade C
transformation u (1) =— u, (1) _ through algebra only to u (f)=— u, (1) _
of velocity components. ’ 71— vu, (1) find that you could simply | 14 vu, (1"

L S have substituted —v for v Y | c? |

e Notice carefully the . everywhere! o

) y u (t)y=— u.(0) = Y _ u_(t'
denominators in these : Y0 u (t)=—¢ T
equations. r|1-—>5 vl 1+ LE’)
- - c
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Observing (Measuring) vs. Seeing: I

* So far we have avoided the important
distinction between observing and seeing.

We can only observe by gathering and
compiling the records made by the horde
of individuals/instruments who collectively
constitute “the observer S.” But individual
humans are accustomed to using their
sense of sight and inferring what's
happening on the basis of what they see.

¢ We need to examine this distinction!
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Observing (Measuring) vs. Seeing: II

o Light-travel time and apparent shape of an
an extended object:

- Anindividual’s visual system (obviously) processes
together the photons that are received together.

- The finite speed of light implies that (1) We now
see a stationary object at distance D not as it is
now, but as it was a time D/c ago; and (2) For
extended objects, the light-travel time D/c is
different for different parts of the object.

- The consequence is that objects moving at a
substantial fraction of the speed of light appear to
bend and rotate as we watch them!
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Observing (Measuringéj vs. Seeing: III

The Doppler shift and the apparent color of a
moving object.

- For a monochromatic light source that is directly
approaching us, the frequency of the light that we
receive is higher than the frequency emitted (I.e.,
higher than the frequency as measured by someone
in the source’s “rest frame.”) This is termed a
blueshift.

- For a source that is directly receding from us, the
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The distinction between observing and seeing is
responsible for the apparently superluminal speeds
of material in some quasars.

As derived in the text, luminous material ejected from a
distant object at speed Bc and traveling obliquely
toward us at an angle 6 (measured in our frame!) is
seen to move “across the sky” at an angular rate which
(when multiplied by the distance of the object) suggests

Relativistic Doppler Effect: I

The Doppler effect refers to the fact that when source
and observer are in relative motion, the received
frequency of the waves is different from the source
frequency.

According to pre-Einsteinian (I.e., Galilean) relativity,
the Doppler “shift” is due solely to the fact that the
travel time for each wave crest is shorter (longer) than
the travel time for the preceding crest if the source is
approaching (receding from) the receiver (observer).
The (special-) relativistic Doppler shift results from not
only decreasing (or increasing) light-travel times BUT
ALSO from time dilation (moving clocks run slow).
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frequency of the light that we receive is lower than an appa P ,d B apparent B _ Bsind
the frequency emitted (I.e., lower than the frequency »  There are cases in which the awrerent 1 Bcosd
as measured by someone in the source’s “rest values of g and 6 imply
frame.”) This is termed a redshift. Bapparen: > 111 Cooll!
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Relativistic Doppler Effect: II

The analysis presented in the text shows that
for a source moving directly away (at speed v)
from the receiver, the received frequency is
given by:

f;eceived - f;aurre

(if source is
receding)
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Relativistic Doppler Effect: III Relativistic Doppler Effect: IV
e For a source moving directly toward the If the source is moving at right angles
receiver at speed , the received frequency is (transversely) to the line of sight from the
given by: receiver to the source , the received frequency
is given by:
f — f f — f I_Lz — f;ourve
received (If source |S received ~ J source C2 - 7/
approaching) (transverse
Doppler effect)
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Relativistic Doppler Effect:

The general formula for the relativistic Doppler
effect includes the previous formulae as special
cases. The waves which are emitted when the
source is moving at an angle 6 to the inward
radial direction are received (later, of course!)
at a frequency given by

2

f.‘\ource 1- LZ
s =
J received v -

1——cosé
c

S——]

f‘SOul‘L‘E
7(1=Bcosh)
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