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o Review of Characteristics of the Wave Function
e Quantum-mechanical Operators

o The Schroedinger Equation

Physics 260 Fall 2003

Chapter 27, Part C 1

— @3
\%a” —=

Characteristics of the Wavefunction ¥

« The wavefunction ¥ is complex-valued.

» The absolute square of the wavefunction is
the probability per unit distance of detecting
the particle.

« The wavefunction is believed to keep track of
all information about the particle-wave, but
the predictions we can make from it are in
general statistical.

» The wavefunction satisfies a linear wave
equation that was first written down in 1926
by Erwin Schroedinger.
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Quantum-mechanical Operators: I

« In Newtonian mechanics, it is considered possible to
precisely know both the position x and the
momentum p, of a particle at a given instant. Other
physical quantities (such as energy and angular
momentum) are known functions of the position and
momentum, so when x and p, are known, it's easy to
find precise values for other physical quantities.

» Because of wave-particle duality and the resultant
uncertainty principles, the quantum-mechanical
description of nature works from the wave function
¥(x,t). How do we obtain the values of physical
variables and how do we determine the evolution of
¥? The next few slides set out the answer provided
by Schroedinger, Heisenberg, Born, and others.
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Quantum-mechanical Operators: II

» Since the basic description of a particle in quantum
mechanics is through the wavefunction, the way to
learn the values of physical quantities is through
acting on the wavefunction with various operators.

« Let’s look at a specific and important example of this.
We have already written down the wavefunction for a
particle of definite momentum p =7k :

\P()C, t) _ Aei(lcr—[ut)

Notice that if we “operate” on this wavefunction with
the “operator” ho, the result is p¥ ! Bingo!
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Quantum-mechanical Operators: III

This illustrates some of the general QM “rules”:

« For each physical quantity, there is a quantum-
mechanical operator Q.

« If the wavefunction describes a QM “state” ¥, in which
the system has a definite value q for a particular
physical quantity, then applying the corresponding
operator to ¥ results in a new function that is just q times
the original function:

« In a general state ¥, the physical quantity doesn't have a
definite value, but the statistical expected value for the

quantity is given by 175<Q> _ .[‘P*(Q‘P)dx
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Quantum-mechanical Operators: IV

Let’s look at two basic applications of this last rule. We'll
suppose that W(x,t) represents a “wave packet” which has a
reasonably well-defined location and a reasonably well-defined
momentum (but of course obeying the Heisenberg uncertainty

principle). - "o
Expected momentum: | (p)= J' g [(7;}}1}&
i i ox

Expected position:

(x)= T W [x¥]dx
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Notice that this latter expression is fully consistent with the idea
that W*Wdx represents the probability of detecting the particle in
the interval (x, x+dx)

The Schroedinger Equation: I
o In 1926, the Austrian physicist Erwin Schroedinger
wrote down an equation that gives the rule for
finding how the wavefunction changes with time:

N )
ot

=HY(x,7)

Here the operator H is called the Hamiltonian; it is
the operator equivalent of the classical total energy.
For example, the Hamiltonian for a free particle of
mass m is p2/2m. (The square of an operator
means apply the operator twice in a row.) If a
particle is moving under the influence of a potential
energy, then H= p2/2m + V(x).
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The Schroedinger Equation: II

« The full name of the equation on the previous slide
is the time-dependent Schroedinger equation. What
makes Schroedinger famous is the fact that he was
able to use his equation to explain the spectrum of
hydrogen, and that others have used it ever since to
understand the behavior of a huge variety of atoms
and molecules.

« The states of definite energy are those states ¥ for
which H¥; = EWg . For such states,

W, (x,0) =y, (x)e ™"
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The Schroedinger Equation: III

» The “stationary-state” function yg(x) satisfies the time-
independent Schroedinger equation:

hZ dl
{_ﬂ R V(X)} v (%) = By, (x)

» Schroedinger obtained the spectrum of hydrogen by solving the
appropriate 3-D generalization of this equation. From the
solutions come not only the allowed energies, but also (using
ye“yg) the probability-density clouds shown in chemistry texts.
The discovery of the Schroedinger equation was arguably one
of the most important events of the twentieth-century
intellectual life on planet Earth.
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