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Reese Ch. 27, Part A
(pp. 1250-1257)

» Review Material on Classical Waves (Ch. 12)
» Heisenberg Uncertainty Principles
and Their Implications

» Observation and Measurement
- in classical physics (with “pure” particles)
- in quantum physics (with particle-wave duality)
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Review of Classical Waves
(pp. 558-559, 565-574)

Traveling Waves

Principle of Superposition
Standing Waves

» Wave Groups and Beats
Fourier Synthesis and Analysis

The Uncertainty Principle(s) for Classical
Waves
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Traveling Waves: 1

» A generic wave traveling in the +x
direction is mathematically described by
f(x-vt), where v is the wave speed, and
the function f gives the form of the
wave.

» A generic wave traveling in the —x
direction is mathematically described by
g(x+vt).
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Traveling Waves: II

» A periodic traveling wave is one for which the wave
form (at all x) at time t, = t, + T is exactly the same
as it was at time t;. T is called the period of the
wave.

» A special kind of periodic traveling wave is a
sinusoidal traveling wave:

2w
W(x,t) = Acos[——(x—vt)+¢,]

* Questions: A

- How is T related to v and A.?

- What do the quantities A and ¢, represent?

- In which direction is the wave given above traveling?
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Describing Sinusoidal Waves

Amplitude A

Phase constant ¢,
Wavelength A

* Wave number k

e Period T

(Ordinary) frequency f (or v)
Angular frequency o
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Principle of Superposition

If the basic principles (such as Newton's laws for
mechanical waves or Maxwell’s equations for
electromagnetic waves) lead to linear equations for a
wave disturbance, then whenever two or more wave
disturbances arrive at the same location, the
resultant disturbance is simply the sum of the
individual disturbances:

Wi C60)=F (60) +- By 060) 4.+ P (60)= 2 ¥, (51)
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Sinusoidal Standing Waves: I

When two sinusoidal traveling waves of the same
amplitude and frequency (but opposite direction of
propagation) are superposed, a standing wave
results:

W, (x,) = Acos(kx — wr)
WY, (x,t) = Acos(kx + wt)
=W, . (x,1) =2 Acos(kx)cos(wt)
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Sinusoidal Standing Waves: 11

Various structures (strings, open and closed
pipes, bars, etc.) have specific natural
frequencies at which they can support
standing waves. (Not all structures sustain
standing waves that are sinusoidal in their
spatial dependence, but all standing waves
ARE sinusoidal in their time dependence.)
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Wave Groups and Beats: 1

If two sinusoidal waves of equal
amplitudes but slightly different
frequencies are traveling in the same
direction, the principle of superposition
yields:

Y. (x.1)=2Acos(fx—arx)cos K%)x - (%J t}
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Wave Groups and Beats: II

o This means that at a fixed location, there is
(roughly speaking) a “fast” oscillation of
(angular) frequency o whose amplitude
slowly rises and falls with angular frequency
Aw. (Why not Aw/2?)

« At fixed time, the spatial variation is (roughly
speaking) a sinusoid with wave number k
whose amplitude gradually varies with

2 location (maxima are separated by
Ax=2r/AK).
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Wave Groups and Beats: III

Phase velocity: The peaks of the short-
wavelength oscillations move with
velocity ()

vphuse - k

Group velocity: The long-wavelength
pattern (the envelope) moves with
velocity Ao do

Yooy = —— > ——
group Ak dk

Wave Groups and Beats: 1V

« If the phase velocity is independent of frequency (as
with sound waves in air), then the waveform travels
without changing its shape. The medium is then said
to be nondispersive.

o If Aw is small enough, a listener hears a sound of the
(average) frequency which varies in loudness. The
number of loudness maxima heard per second is
called the number of beats per second and is equal
to the difference between the (ordinary) frequencies
of the two waves: A
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Fourier Synthesis and Analysis

« The French mathematician Fourier realized that any well-
behaved periodic function can be expressed as a sum (in
general, an infinite series) of sinusoids whose frequencies are
integer multiples of the fundamental frequency (1/T). Building
up a function this way is called Fourier synthesis.

« Fourier developed a method for working from the function itself
to find what values to use for the coefficients. This is called
Fourier analysis.

« Fourier series can only represent periodic functions. However,
an extension of this idea, using the whole continuous range of
frequencies, is used to represent functions that are not periodic,
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Uncertainty Principles
for Classical Waves: 1

« In the superposition of two different sinusoids, the spatial
“width” Ax of each long maximum is inversely related to Ak, the
difference between the wave numbers of the two waves. This
is simply a consequence of the mathematics of adding two
slightly different sinusoidal functions.

« This inverse relationship also applies to the infinite sums
(integrals) used when Fourier transforms are applied.

« As applied to the spread in wave numbers and the width of the
corresponding wave function ¥, the uncertainty principle states
that

such as wave pulses. This technique is called Fourier > 1
transformation. AkAx > E
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Uncertainty Principles
for Classical Waves: II

« When a function of time is expressed as a
superposition of sinusoids of various frequencies, a
completely analogous relationship holds. The
frequency-time uncertainty principle states that

AwAt Zl
2

o To put it in musical terms, a note of duration At must

involve { range of angular frequencies Aw that's at
least — .
2At

Uncertainty Principles:
Long History but a Recent Name

« These inverse relationships were well known before
1850 to people who specialized in wave physics or
applied mathematics.

« The name uncertainty principles is more recent (late
1920’s), and is associated with the German physicist
Werner Heisenberg, one of the founders of quantum
mechanics.

e According to quantum mechanics, matter exhibits
wave-particle duality. Specifically, the momentum of
a particle is proportional to the wave number of an
associated wave. Similarly, the energy of a particle is
proportional to the frequency of an associated wave.
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The Uncertainty Principles
for Matter Waves

» Heisenberg’s uncertainty principles are:
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An Application of the
Position-Momentum Uncertainty Principle

« The position-momentum uncertainty principle can be
used to get a good order-of-magnitude estimate for the
size of the hydrogen atom in its ground state. We look

Ap Ax > E (position-momentum u.p.) for that value of the electron-proton separation r that
\p AX = 5 leads to a minimum total energy.
h P " e
h . p2Apr—=KE="—=~ PE=- =
AEAt > ) (energy-time u.p.) r 2m  2mr’ Are r
w Feoumd 471"90;?—Az ~0.053 nm Eground ~ —% ra— ¢ =-13.6eV
where 1 =1.055x107" Joule - sec me %orgmund
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Two Implications of the
Energy-Time Uncertainty Principle

» The energy of an excited state (equivalently, the
mass of an unstable particle) cannot be precisely
determined.

o According to quantum mechanics, the vacuum
consists of a “seething sea” of very short-lived
pairs of virtual particles, which appear and
disappear under the protective cover of the
energy-time uncertainty principle. This sea of
virtual particles has a measurable effect on
atomic energy states and therefore on
atomic spectra.
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Observation and Measurement

« Within classical physics, it is assumed possible when
observing a system to either make the disturbance
negligible or else to account for it precisely.

o In the domain of quantum physics (where the
Heisenberg uncertainty products can't be ignored),
the very act of measurement changes the system in
ways that cannot be accounted for precisely. In
general, the predictions of quantum mechanics have
to be expressed in statistical (probabilistic) terms.
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