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Reese Ch. 9, Sect. 3
(pp. 388-390)

e The Rocket: A Variable-Mass System
- Terminology
- Analysis of Single-Stage Rocket

» Multi-Stage Rockets
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Rocket Terminology

» The exhaust speed is the speed of the exiting
exhaust gases relative to the nozzle. In our analysis,
we'll assume that this speed is constant throughout
the operation of any given engine.

» A single-stage rocket has only one engine; a
multi-stage rocket has two or more. (Why use a
multi-stage rocket?)

» The payload mass (often called just the payload) is
the mass of that part of the rocket that can be used
for purposes other than propulsion. (This is not same
as the final mass of the rocket. Why not?)
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Analysis of Single-Stage Rocket:I

« For simplicity, assume straight-line motion in gravity-
free environment, with m(t) and v,(t) being the
instantaneous mass and velocity of the rocket.
Newton’s Laws (or conservation of momentum
applied to the entire system) yield the following
equation for the rocket’s motion:

dv (t dm(t
w0, dm®)
dt dt
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Analysis of Single-Stage Rocket:II

« Integrating this equation from the beginning of the burn until
the end of the burn, we obtain

—_ i
v)gf - vxi - Vexh In| —
m r

« Because the exhaust speeds of chemical rockets are limited to a
few km/s while the speed for escape from Earth is 11.2 km/s,
this equation reveals the need for multistage rockets for space
missions.
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Multi-Stage Rockets (pp. 425-436)
« For a multi-stage rocket, the rocket equation gives the velocity
“boost” from each stage. The velocity at the beginning of stage
n+1 is just the velocity at the end of stage n, but the mass at
the beginning of stage n+1 is LESS than the mass at the end of H 7 H
stage n. (How can this be? It's because the tanks, engine, and * Orbltal Motion vs. Spln
nozzle of stage n are jettisoned.) ° Orbita| Angular Momentum
« Final result:
N e Circular Orbital Motion
V=V, = Zvexh In| — « Noncircular Orbital Motion
. n=1 mf,n
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Spin vs. Orbital Motion

« Orbital motion is motion of an extended
object (or collection of objects) “as a whole”
— the translational motion of the object’s
center-of-mass point.

« Spin is rotational motion of an object — the
turning of an object around its center of mass
point.

» Sometimes the distinction is fuzzy — what we
call a given motion can depend on how much
we mentally “lump” small objects together
into larger wholes.
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Orbital Angular Momentum of a Particle

» The orbital angular momentum of a particle is
definedas - _ -

Erxp= m(r X V)

» Notes:

- The orbital angular momentum depends on the
particle’s mass, speed, distance from the origin,
and the angle between its velocity vector and its
position vector.

- If the particle is moving in the xy plane and CCW

about the origin, then the angular momentum
vector points in the +z direction.
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What causes a particle’s
angular momentum to change?

« Suppose that a single force acts on a particle. Itis
not difficult to show that

iHi:i;xﬁ

dt

T

* Notes:
- T s called the torque acting on the particle

- If several forces act on the particle, the correct value to use
for the effective torque is just the vector sum of the torques
exerted by the various forces: 7 net
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Alternate Expressions for the Torque
Exerted by a Force: 1
The line through the object along the direction of

any force vector is called the line of action of that
force.

The (perpendicular) distance from the origin to
the line of action is called the moment arm of the
force.

The magnitude of the torque equals the moment
arm times the magnitude of the force:

|r|:rL‘F‘
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Alternate Expressions for the Torque
Exerted by a Force: II

« The magnitude of the torque can also be written
as the full distance from the origin to the particle,
times the tangential component of the force (note
that this component is perpendicular to the radius

vector): |f| —rF
-

« The magnitude of the torque can also be written
using the angle between the two vectors:

T= rF|sin 9|
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Uniform Circular Motion (UCM)

e This name refers to “motion in a circular
path at constant speed.”
 This motion is periodic. What is the
period T?
« If the radius of the path is r, the
circumference is 2mnr.
o If the speed is v, then vT = 2xar, so . . .

T = 2nr/v
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r and 0 versus time for UCM

e Assuming that. . .
« path lies in xy-plane
« coordinate origin is at the center of the circle
- when t = 0 the particle has x; = rand v,; = v (>0)
o Then the particle’s polar coordinates are:
r (a constant!) and 6(t) = (v/r)t = 2xft = wt, where
f = v/2xr is called the (ordinary) frequency
o = 2nf is called the angular frequency

Physics 260 Fall 2003 Chapter 9 (Sect. 3) and 10A 13

— e =
/ \%@ Z @

Radial and tangential unit vectors

« In treating motions which exhibit circular
symmetry (such as UCM), it can be really
convenient to use two new unit vectors:

« the unit vector e, which points radially outward

« the unit vector e, which is 90° counterclockwise
(CCW) from e, so that it points tangentially in
direction of increasing 6
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B e R e
Achtung! r, v, and a vectors in UCM

The directions of these unit vectors depend
on location in the xy-plane.

Example #1: Atlocationr=2i+0j...

e =iande;=j

Example #2: At locationr = 5i + 5j . . .

e =(i+j)/2 ande, = (-i +j) /\2

Example #3: At locationr=0i-4j...
e=-jande, =i

Physics 260 Fall 2003
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e radius: r = rtimes e,

» velocity vector: v = v, times e, =v, e,
o speed v = |V,
sv=ve, (for CCW motion)
o vV =-ve, (for CW motion)

« acceleration vector: a = - (v3/r)e,
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Non-uniform circular motion (NUCM)

« Radius: still have r = r times e,

« The velocity vector is still purely tangential:
oV = v(t) times e, = vy(t)e,

e The speed is a function of time: v(t) = | v,(t) |

« Now the acceleration has two components:

e a=atimese +a,times e, =a,e, + a, €,
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Dynamics of Circular Motion

o We simply apply Newton’s Second Law:
in order to move with a particular
acceleration a, an object of mass m
must be moving under the influence of
force(s) whose resultant is m times a:

« the radial component: alt) =-vr F = ma
« the tangential component: a, (t) = dv,/dt net
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Uniform Circular Motion (UCM)

o At each instant, the acceleration vector points
razdially inward. It has a constant magnitude
v2/r.

» Therefore the instantaneous net force must
point radially inward and have a magnitude
mv2/r. This is usually called the “centripetal
force.”

» Beware: Centripetal force is just a name for
the necessary resultant of the physical forces
that are acting. It does NOT belong in a
free-body diagram.
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Angular Momentum for UCM

» Using the center of the circle as the coordinate
origin, what is the angular momentum vector for a
particle exhibiting counterclockwise UCM in the xy
plane?

» How about for clockwise UCM?

» In either case, does the angular momentum vary
with time?

« Is this consistent with rotational version of Newton’s
2nd | aw?

o How does this connect with what you've already
learned about circular motion under gravity?
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Nonuniform Circular Motion (NUCM)

» The instantaneous acceleration has a
radial component -[v(t)]%/r and a
tangential component dv,/dt.

« Therefore the instantaneous net force
must have components that are just m
times these acceleration components.

» Why can't a satellite exhibit NUCM?
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Noncircular Orbital Motion under Gravity

« When an object follows a noncircular orbit
under the influence of gravity, what does the
rotational version of Newton'’s 2" Law tell us
about the object’s angular momentum?

« How is the rotational form of Newton’s 2nd
Law related to Kepler's 2nd Law (the “equal
areas” law)?
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Reese Ch. 10, part A2 Rigid Bodies

(pp. 436-445)

Rigid Bodies

Spin Angular Momentum

Rotational Inertia of Symmetric Bodies
» Equation for Rate of Change of Spin

« Kinetic Energy due to Spin

Rotational Distortion of Objects
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« A rigid body is an object which exhibits
no deformation (change of shape). In a
rigid body, the distance between any
two bits of material (any two atoms,
say) remains constant.

e Most of our study of rotational
dynamics will deal with rigid bodies that
have at least one axis of symmetry.

Physics 260 Fall 2003 Chapter 9 (Sect. 3) and 10A 24




7

— — -
Spin Angular Momentum

("Spin”) of a Rigid Body
» For simplicity, consider a rigid body whose center of
mass (CM) is at rest and whose rotation axis
coincides with one of body’s axes of symmetry. Then

- Each of the atoms in the body is in uniform circular motion
about the rotation axis, and all of the atoms have the same
angular velocity.

- If we use the CM as the coordinate origin and add up the
(orbital) angular momentum vectors for all of the atoms, we
get a simple result (after doing vector algebra and utilizing
the system’s symmetry) L

spin

2 > —~

— ————

Comments on Spin

« The summation in the spin equation is called
the rotational inertia (or “moment of inertia”)

of the object: \
I=| > mr}
» The rotational inertia I i )
- depends on the total mass of the object and how
the mass is distributed, and
- also depends on the specific symmetry axis about
which the body is rotating.
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Evaluating Rotational Inertia:I

« For a body consisting of several individual mass
points connected by “massless” rods, we can directly

apply the discrete sum:
1= (Z m,-r,i)

« For a body in which the matter is distributed
continuously, we must interpret the sum as an

mwﬁzj@mzjﬁmmw

body body
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Evaluating Rotational Inertia:II

» For rigid assemblies whose parts are simple rigid
bodies, we can simply add up the I-values for the
parts (provided that the rotation axis coincides with a
symmetry axis for each part):

Iassembly = Z Ii
i

o Table 10.1 (p. 440) lists the rotational inertia values
for some common symmetric bodies.
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Rotational Form of Newton’s 2 Law
for a Spinning System: I

+ We previously obtained the equation d_L — 7
for a single orbiting particle, and dt net
we have also defined the spin angular momentum of
a rotating body as the vector sum of the orbital
angular momenta of its various parts.

» These two facts mean that if we let fl ot) denote
the net torque on particle /and we de{‘l"ne the total
torque on the system as 7 7 then

= T. 7
we get the rotational 2nd [g® &= i(net)

for a spinning system: d]j

spin —

7 sy ==
Rotational Form of Newton’s 2nd Law
for a Spinning System: II

e The net torqueZ;,.;)on any one particle consists of
an internal contribution (due to forces from other
particles in the object) and an external contribution.
In many situations the internal forces act along the
line between the interacting particles, which means
the total internal torque is zero. We only consider
such cases, so we can write  _.

spin —

=7
total (external )
dt

/ - Ttotal
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Rotational Form of Newton’s 2nd Law
for a Spinning System: III

» Combining this equation with the
expression for the spin angular
momentum as the product of rotational
inertia and angular velocity, we obtain

dL,, _d(&)_.

dt dt

- z-total (external )
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Kinetic Energy due to Spin

 To obtain the total kinetic energy of a
spinning object, we add up the (orbital)
kinetic energies of the various parts.
The result is:

2

KE

total — 510)

Physics 260 Fall 2003 Chapter 9 (Sect. 3) and 10A 32




— ===
\\%@ Z v‘y

Rotational Distortion

« Although we think of Earth as a solid
object, it is able to “flow” in response to
stresses and it has a shape that is
approximately the same as that of a
spinning, self-gravitating fluid: an
oblate ellipsoid. Newton recognized
this, but confirming measurements
were first made after Newton'’s death.
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Reese Ch. 10, part A3
(pp. 445-455)

Precession
Simultaneous Spin and Orbital Motion
Synchronous Rotation &
Parallel-Axis Theorem
e Pure Rolling Motion
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Precession

« If a rapidly spinning top is subjected to a
torque that is perpendicular to its spin axis,
the top slowly precesses: the direction of its
symmetry axis gradually moves in the
direction of the torque.

« For a given torque, the precession rate is
inversely proportional to the spin rate: the
faster a top spins, the more slowly it
precesses.
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Earth’s Precession

o The Earth precesses because the Moon and
Sun exert a net external torque (due to the
Earth’s equatorial bulge and the fact that
Earth’s equator does not lie in the plane of its
orbit).

» One precessional cycle takes nearly 26,000
years: the angular speed of Earth’s
precession is only about 100 parts per billion
of its spin angular speed!

Physics 260 Fall 2003 Chapter 9 (Sect. 3) and 10A 36




o e =
7 e P ==

Simultaneous Spin and Orbital Motion: I

The total KE of a system can be written
as the sum of the spin KE and the
translational KE associated with the
motion of the system'’s center of mass:

1 1
KEtotal = _]CMa)2 + EMv(sz
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Simultaneous Spin and Orbital Motion: II

The total angular momentum of a
system can be written as the vector
sum of the spin angular momentum and
the angular momentum associated with
the motion of the CM of the system:

+Mr.,, XV,

—_

L tal :ICMa)

fo spin
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Simultaneous Spin and Orbital Motion: III

The angular momentum associated with
the motion of the CM of the system can
also be written as:

—_ . - . 2 -
orbital — WM X VCM _ M 1M a)orbital
Then the total angular momentum is:

T . — 2 —

Ltotal =1, CM a)spin +Mr 1CM a)orbital
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Synchronous Rotation I

« If the spin angular velocity and orbital
angular velocity have the same magnitude
and direction -

spin

= a)orbital =0

then we say that the object exhibits
synchronous rotation.

» An example is the Moon, which exhibits
(nearly) synchronous rotation as it orbits the
Earth.
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Synchronous Rotation II

« In the case of synchronous rotation, the

body’s total angular momegtum simplifies to
L =y + Mriy )0

» In synchronous rotation, rather than rotating
about its symmetry axis, the body is
effectively rotating about a parallel axis
through the coordinate origin. Referring to
the equation above, the rotational inertia
about this “displaced axis”is [ =1, + Mr_,,
This is called the parallel-axis theorem.
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Pure Rolling Motion

 Consider a rigid wheel (or other
symmetrical rigid body of circular cross
section). When it rolls along a surface
without slipping, the point of its contact
with the surface is the (instantaneous)
axis of a synchronous rotation:

Pure rolling is one type
of synchronous rotation!
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Equations That Describe
Pure Rolling on a Flat Surface

e When a rolling wheel of radius R rotates
through an angle 0, the hub (center) of the

wheel moves a distance s = R 0.

o The hub’s speed , :Rﬁ:Ra)

center dt
o The linear acceleration of the hub is given by
2
acenter =Rd szd_w:Ra
dt dt

Total Kinetic Energy
of a Rolling Wheel
» We apply our earlier result that the total KE is

the sum of spin KE and the KE associated
with translation of the CM:

KEtolal = KEspin + KE/mmIat[on
=KE, .= %[CM o+ %MV?M
=KE,,, = %(ICM +MR*)o® = %1(02

(The last step uses the parallel-axis theorem.)
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