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Reese Ch. 9, Sect. 3
(pp. 388-390)

• The Rocket: A Variable-Mass System 
– Terminology
– Analysis of Single-Stage Rocket

• Multi-Stage Rockets
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Rocket Terminology
• The exhaust speed is the speed of the exiting 

exhaust gases relative to the nozzle.  In our analysis, 
we’ll assume that this speed is constant throughout 
the operation of any given engine.

• A single-stage rocket has only one engine; a 
multi-stage rocket has two or more. (Why use a 
multi-stage rocket?)

• The payload mass (often called just the payload) is 
the mass of that part of the rocket that can be used 
for purposes other than propulsion. (This is not same 
as the final mass of the rocket.  Why not?)
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Analysis of Single-Stage Rocket:I
• For simplicity, assume straight-line motion in gravity-

free environment, with m(t) and vx(t) being the 
instantaneous mass and velocity of the rocket.  
Newton’s Laws (or conservation of momentum 
applied to the entire system) yield the following 
equation for the rocket’s motion:
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Analysis of Single-Stage Rocket:II
• Integrating this equation from the beginning of the burn until 

the end of the burn, we obtain

• Because the exhaust speeds of chemical rockets are limited to a 
few km/s while the speed for escape from Earth is 11.2 km/s, 
this equation reveals the need for multistage rockets for space 
missions.
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Multi-Stage Rockets
• For a multi-stage rocket, the rocket equation gives the velocity 

“boost” from each stage.  The velocity at the beginning of stage
n+1 is just the velocity at the end of stage n, but the mass at 
the beginning of stage n+1 is LESS than the mass at the end of 
stage n.  (How can this be? It’s because the tanks, engine, and 
nozzle of stage n are jettisoned.)

• Final result:
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Reese Ch. 10, part A1
(pp. 425-436)

• Orbital Motion vs. Spin
• Orbital Angular Momentum
• Circular Orbital Motion
• Noncircular Orbital Motion
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Spin vs. Orbital Motion
• Orbital motion is motion of an extended 

object (or collection of objects) “as a whole” 
– the translational motion of the object’s 
center-of-mass point.

• Spin is rotational motion of an object – the 
turning of an object around its center of mass 
point.

• Sometimes the distinction is fuzzy – what we 
call a given motion can depend on how much 
we mentally “lump” small objects together 
into larger wholes.
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Orbital Angular Momentum of a Particle

• The orbital angular momentum of a particle is 
defined as 

• Notes:
– The orbital angular momentum depends on the 

particle’s mass, speed, distance from the origin, 
and the angle between its velocity vector and its 
position vector.

– If the particle is moving in the xy plane and CCW 
about the origin, then the angular momentum 
vector points in the +z direction.

( )L r p m r v≡ × = ×
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What causes a particle’s 
angular momentum to change?

• Suppose that a single force acts on a particle.  It is 
not difficult to show that

• Notes:
– is called the torque acting on the particle
– If several forces act on the particle, the correct value to use 

for the effective torque is just the vector sum of the torques 
exerted by the various forces:

dL r F
dt

τ= × ≡

τ

netτ
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Alternate Expressions for the Torque 
Exerted by a Force: I

• The line through the object along the direction of 
any force vector is called the line of action of that 
force.

• The (perpendicular) distance from the origin to 
the line of action is called the moment arm of the 
force.

• The magnitude of the torque equals the moment 
arm times the magnitude of the force:

r Fτ ⊥=
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Alternate Expressions for the Torque 
Exerted by a Force: II

• The magnitude of the torque can also be written 
as the full distance from the origin to the particle, 
times the tangential component of the force (note 
that this component is perpendicular to the radius 
vector):

• The magnitude of the torque can also be written 
using the angle between the two vectors:

rFτ ⊥=

sinrFτ θ=
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Uniform Circular Motion (UCM)
• This name refers to “motion in a circular 

path at constant speed.”
• This motion is periodic. What is the 

period T?
• If the radius of the path is r, the 

circumference is 2πr. 
• If the speed is v, then vT = 2πr, so . . .

T = 2πr/v
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r and  θ versus time for UCM
• Assuming that. . .

• path lies in xy-plane
• coordinate origin is at the center of the circle 
• when t = 0 the particle has xi = r and vyi = v (>0)

• Then the particle’s polar coordinates are: 
r (a constant!) and θ(t) = (v/r)t = 2πft = ωt, where 

f = v/2πr is called the (ordinary) frequency
ω = 2πf is called the angular frequency
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Radial and tangential unit vectors

• In treating motions which exhibit circular 
symmetry (such as UCM), it can be really 
convenient to use two new unit vectors:

• the unit vector er which points radially outward

• the unit vector eθ which is 90o counterclockwise 
(CCW) from er so that it points tangentially in 
direction of increasing θ
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Achtung!
• The directions of these unit vectors depend 

on location in the xy-plane.
• Example #1:  At location r = 2i + 0j . . .

er = i and eθ = j

• Example #2: At location r = 5i + 5j . . .
er = (i + j)/√2 and eθ = (-i + j) /√2

• Example #3: At location r = 0i - 4j . . .
er = - j and eθ = i
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r, v, and a vectors in UCM
• radius: r =  r times er

• velocity vector: v = vθ times eθ = vθ eθ
• speed v = |vθ| 
• v = v eθ (for CCW motion)
• v = - v eθ (for CW motion)

• acceleration vector: a = - (v2/r)er
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Non-uniform circular motion (NUCM)

• Radius:  still have r = r times er

• The velocity vector is still purely tangential:
• v = vθ(t) times eθ  = vθ(t)eθ

• The speed is a function of time: v(t) = | vθ(t) |
• Now the acceleration  has two components: 
• a = ar times er + aθ times eθ = ar er + aθ eθ

• the radial component: ar(t) = - v2/r
• the tangential component: aθ (t) = dvθ/dt
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Dynamics of Circular Motion
• We simply apply Newton’s Second Law:  

in order to move with a particular 
acceleration a, an object of mass m 
must be moving under the influence of 
force(s) whose resultant is m times a:

Fnet = ma
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Uniform Circular Motion (UCM)
• At each instant, the acceleration vector points 

radially inward.  It has a constant magnitude 
v2/r.  

• Therefore the instantaneous net force must
point radially inward and have a magnitude 
mv2/r.  This is usually called the “centripetal 
force.” 

• Beware: Centripetal force is just a name for 
the necessary resultant of the physical forces 
that are acting.  It does NOT belong in a 
free-body diagram.
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Angular Momentum for UCM 
• Using the center of the circle as the coordinate 

origin, what is the angular momentum vector for a 
particle exhibiting counterclockwise UCM in the xy
plane?  

• How about for clockwise UCM?
• In either case, does the angular momentum vary 

with time?
• Is this consistent with rotational version of Newton’s 

2nd Law?
• How does this connect with what you’ve already 

learned about circular motion under gravity?
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Nonuniform Circular Motion (NUCM)

• The instantaneous acceleration has a 
radial component  -[v(t)]2/r and a 
tangential component dvθ/dt. 

• Therefore the instantaneous net force 
must have components that are just m 
times these acceleration components.

• Why can’t a satellite exhibit NUCM?
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Noncircular Orbital Motion under Gravity

• When an object follows a noncircular orbit 
under the influence of gravity, what does the 
rotational version of Newton’s 2nd Law tell us 
about the object’s angular momentum?

• How is the rotational form of Newton’s 2nd

Law related to Kepler’s 2nd Law (the “equal 
areas” law)?
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Reese Ch. 10, part A2
(pp. 436-445)

• Rigid Bodies
• Spin Angular Momentum
• Rotational Inertia of Symmetric Bodies
• Equation for Rate of Change of Spin
• Kinetic Energy due to Spin
• Rotational Distortion of Objects
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Rigid Bodies
• A rigid body is an object which exhibits 

no deformation (change of shape).  In a 
rigid body, the distance between any 
two bits of material (any two atoms, 
say) remains constant.

• Most of our study of rotational 
dynamics will deal with rigid bodies that 
have at least one axis of symmetry.
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Spin Angular Momentum 
(“Spin”) of a Rigid Body

• For simplicity, consider a rigid body whose center of 
mass (CM) is at rest and whose rotation axis 
coincides with one of body’s axes of symmetry. Then
– Each of the atoms in the body is in uniform circular motion 

about the rotation axis, and all of the atoms have the same 
angular velocity.

– If we use the CM as the coordinate origin and add up the 
(orbital) angular momentum vectors for all of the atoms, we 
get a simple result (after doing vector algebra and utilizing 
the system’s symmetry):

2
spin i i

i
L m r ω⊥

 
=  

 
∑
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Comments on Spin
• The summation in the spin equation is called 

the rotational inertia (or “moment of inertia”) 
of the object:

• The rotational inertia I 
– depends on the total mass of the object and how 

the mass is distributed, and
– also depends on the specific symmetry axis about 

which the body is rotating.

2
i i

i
I m r⊥

 
≡ 

 
∑
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Evaluating Rotational Inertia:I
• For a body consisting of several individual mass 

points connected by “massless” rods, we can directly 
apply the discrete sum:

• For a body in which the matter is distributed 
continuously, we must interpret the sum as an 
integral:

2

i i
i

I m r
⊥

≡   
 ∑

2 2 ( )
body body

I r dm r r dVρ⊥ ⊥≡ =∫ ∫
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Evaluating Rotational Inertia:II
• For rigid assemblies whose parts are simple rigid 

bodies, we can simply add up the I-values for the 
parts (provided that the rotation axis coincides with a 
symmetry axis for each part): 

• Table 10.1 (p. 440) lists the rotational inertia values 
for some common symmetric bodies.

assembly i
i

I I= ∑
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Rotational Form of Newton’s 2nd Law 
for a Spinning System: I

• We previously obtained the equation
for a single orbiting particle, and
we have also defined the spin angular momentum of 
a rotating body as the vector sum of the orbital 
angular momenta of its various parts.

• These two facts mean that if we let            denote 
the net torque on particle i and we define the total 
torque on the system as                             , then
we get the rotational 2nd law
for a spinning system:

net
dL
dt

τ=

( )i netτ

( )total i net
i

τ τ≡ ∑
spin

total

dL
dt

τ=
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Rotational Form of Newton’s 2nd Law 
for a Spinning System: II

• The net torque         on any one particle consists of 
an internal contribution (due to forces from other 
particles in the object) and an external contribution.  
In many situations the internal forces act along the 
line between the interacting particles, which means 
the total internal torque is zero. We only consider 
such cases, so we can write

( )i netτ

( )
spin

total external

dL
dt

τ=
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Rotational Form of Newton’s 2nd Law 
for a Spinning System: III

• Combining this equation with the 
expression for the spin angular 
momentum as the product of rotational 
inertia and angular velocity, we obtain

( )
( )spin

total external

dL d I
dt dt

ω τ= =
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Kinetic Energy due to Spin
• To obtain the total kinetic energy of a 

spinning object, we add up the (orbital) 
kinetic energies of the various parts.  
The result is:

21
2totalKE Iω=
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Rotational Distortion
• Although we think of Earth as a solid 

object, it is able to “flow” in response to 
stresses and it has a shape that is 
approximately the same as that of a 
spinning, self-gravitating fluid: an 
oblate ellipsoid. Newton recognized 
this, but confirming measurements 
were first made after Newton’s death.
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Reese Ch. 10, part A3
(pp. 445-455)

• Precession 
• Simultaneous Spin and Orbital Motion
• Synchronous Rotation & 

Parallel-Axis Theorem
• Pure Rolling Motion
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Precession
• If a rapidly spinning top is subjected to a 

torque that is perpendicular to its spin axis, 
the top slowly precesses: the direction of its 
symmetry axis gradually moves in the 
direction of the torque.  

• For a given torque, the precession rate is 
inversely proportional to the spin rate: the 
faster a top spins, the more slowly it 
precesses.
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Earth’s Precession
• The Earth precesses because the Moon and 

Sun exert a net external torque (due to the 
Earth’s equatorial bulge and the fact that 
Earth’s equator does not lie in the plane of its 
orbit).

• One precessional cycle takes nearly 26,000 
years: the angular speed of Earth’s 
precession is only about 100 parts per billion 
of its spin angular speed!
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Simultaneous Spin and Orbital Motion: I

The total KE of a system can be written 
as the sum of the spin KE and the 
translational KE associated with the 
motion of the system’s center of mass:

2 21 1
2 2total CM CMKE I Mvω= +
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Simultaneous Spin and Orbital Motion: II

The total angular momentum of a 
system can be written as the vector 
sum of the spin angular momentum and 
the angular momentum associated with 
the motion of the CM of the system:

total CM spin CM CML I Mr vω= + ×
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Simultaneous Spin and Orbital Motion: III

The angular momentum associated with 
the motion of the CM of the system can 
also be written as:

Then the total angular momentum is: 

2
orbital CM CM CM orbitalL Mr v Mr ω⊥≡ × =

2
total CM spin CM orbitalL I Mrω ω⊥= +
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Synchronous Rotation I
• If the spin angular velocity and orbital 

angular velocity have the same magnitude 
and direction

then we say that the object exhibits 
synchronous rotation. 

• An example is the Moon, which exhibits 
(nearly) synchronous rotation as it orbits the 
Earth.

spin orbitalω ω ω= =
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Synchronous Rotation II
• In the case of synchronous rotation, the 

body’s total angular momentum simplifies to

• In synchronous rotation, rather than rotating 
about its symmetry axis, the body is 
effectively rotating about a parallel axis 
through the coordinate origin. Referring to 
the equation above, the rotational inertia 
about this “displaced axis” is 
This is called the parallel-axis theorem.

2( )total CM CML I Mr ω⊥= +

2
CM CMI I Mr⊥= +
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Pure Rolling Motion
• Consider a rigid wheel (or other 

symmetrical rigid body of circular cross 
section).  When it rolls along a surface 
without slipping, the point of its contact 
with the surface is the (instantaneous) 
axis of a synchronous rotation:

Pure rolling is one type 
of synchronous rotation!
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Equations That Describe 
Pure Rolling on a Flat Surface

• When a rolling wheel of radius R rotates 
through an angle θ, the hub (center) of the 
wheel moves a distance s = R θ.

• The hub’s speed

• The linear acceleration of the hub is given by 

center
dv R R
dt
θ ω= =

2

2center
d da R R R
dt dt

θ ω α= = =
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Total Kinetic Energy 
of a Rolling Wheel

• We apply our earlier result that the total KE is 
the sum of spin KE and the KE associated 
with translation of the CM:

(The last step uses the parallel-axis theorem.)

2 2

2 2 2

1 1
2 2
1 1( )
2 2

total spin translation

total CM CM

total CM

KE KE KE

KE I Mv

KE I MR I

ω

ω ω

= +

⇒ = +

⇒ = + =


