

- The Rocket: A Variable-Mass System
 - Terminology
 - Analysis of Single-Stage Rocket
- Multi-Stage Rockets

Chapter 9 (Sect. 3) and 10A

Rocket Terminology

- The <u>exhaust speed</u> is the speed of the exiting exhaust gases relative to the nozzle. In our analysis, we'll assume that this speed is constant throughout the operation of any given engine.
- A single-stage rocket has only one engine; a multi-stage rocket has two or more. (Why use a multi-stage rocket?)
- The **payload mass** (often called just the payload) is the mass of that part of the rocket that can be used for purposes other than propulsion. (This is not same as the final mass of the rocket. Why not?)

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Analysis of Single-Stage Rocket:I

For simplicity, assume straight-line motion in gravityfree environment, with m(t) and v_v(t) being the instantaneous mass and velocity of the rocket. Newton's Laws (or conservation of momentum applied to the entire system) yield the following equation for the rocket's motion:

$$m(t)\frac{dv_x(t)}{dt} = -v_{exh}\frac{dm(t)}{dt}$$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Analysis of Single-Stage Rocket:II

Integrating this equation from the beginning of the burn until the end of the burn, we obtain

$$v_{xf} - v_{xi} = v_{exh} \ln \left(\frac{m_i}{m_f} \right)$$

Because the exhaust speeds of chemical rockets are limited to a few km/s while the speed for escape from Earth is 11.2 km/s, this equation reveals the need for multistage rockets for space missions.

Physics 260 Fall 2003

- For a multi-stage rocket, the rocket equation gives the velocity "boost" from each stage. The velocity at the beginning of stage n+1 is just the velocity at the end of stage n, but the mass at the beginning of stage n+1 is LESS than the mass at the end of stage n. (How can this be? It's because the tanks, engine, and nozzle of stage n are jettisoned.)
- Final result:

$$v_{xf} - v_{xi} = \sum_{n=1}^{N} v_{exh,n} \ln \left(\frac{m_{i,n}}{m_{f,n}} \right)$$

Chapter 9 (Sect. 3) and 10A

Reese Ch. 10, part A1 (pp. 425-436)

- Orbital Motion vs. Spin
- Orbital Angular Momentum
- Circular Orbital Motion
- Noncircular Orbital Motion

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Spin vs. Orbital Motion

- Orbital motion is motion of an extended object (or collection of objects) "as a whole" - the translational motion of the object's center-of-mass point.
- **Spin** is rotational motion of an object the turning of an object around its center of mass point.
- Sometimes the distinction is fuzzy what we call a given motion can depend on how much we mentally "lump" small objects together into larger wholes.

Physics 260 Fall 2003

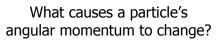
Chapter 9 (Sect. 3) and 10A

Orbital Angular Momentum of a Particle

• The orbital angular momentum of a particle is defined as $\vec{L} \equiv \vec{r} \times \vec{p} = m(\vec{r} \times \vec{v})$

- Notes:
 - The orbital angular momentum depends on the particle's mass, speed, distance from the origin, and the angle between its velocity vector and its position vector.
 - If the particle is moving in the xy plane and CCW about the origin, then the angular momentum vector points in the +z direction.

Physics 260 Fall 2003



 Suppose that a single force acts on a particle. It is not difficult to show that

$$\frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} \equiv \vec{\tau}$$

- Notes:
 - $\vec{\tau}$ is called the torque acting on the particle
 - If several forces act on the particle, the correct value to use for the effective torque is just the vector sum of the torques exerted by the various forces: $\vec{\tau}_{net}$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

0

Alternate Expressions for the Torque Exerted by a Force: I

- The line through the object along the direction of any force vector is called the <u>line of action</u> of that force.
- The (perpendicular) distance from the origin to the line of action is called the <u>moment arm</u> of the force.
- The magnitude of the torque equals the moment arm times the magnitude of the force:

$$\left|\vec{\tau}\right| = r_{\perp} \left|\vec{F}\right|$$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Alternate Expressions for the Torque Exerted by a Force: II

- The magnitude of the torque can also be written as the full distance from the origin to the particle, times the tangential component of the force (note that this component is $\underline{perpendicular}$ to the radius vector): $|\vec{\tau}| = rF_{\parallel}$
- The magnitude of the torque can also be written using the angle between the two vectors:

$$\tau = rF |\sin \theta|$$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Uniform Circular Motion (UCM)

- This name refers to "motion in a circular
- This motion is *periodic*. What is the period T?
 - If the radius of the path is r, the circumference is $2\pi r$.

path at constant speed."

• If the speed is v, then $vT = 2\pi r$, so . . .

$$T = 2\pi r/v$$

Physics 260 Fall 2003 Chapter 9

- · Assuming that. . .
 - · path lies in xy-plane
 - · coordinate origin is at the center of the circle
 - when t = 0 the particle has $x_i = r$ and $v_{vi} = v$ (>0)
- Then the particle's polar coordinates are:
 r (a constant!) and θ(t) = (v/r)t = 2πft = ωt, where
 f = v/2πr is called the (ordinary) frequency
 ω = 2πf is called the angular frequency

Chapter 9 (Sect. 3) and 10A

13

Radial and tangential unit vectors

- In treating motions which exhibit circular symmetry (such as UCM), it can be really convenient to use two new unit vectors:
 - the unit vector **e**_r which points radially outward
 - the unit vector \mathbf{e}_{θ} which is 90° counterclockwise (CCW) from \mathbf{e}_{r} so that it points tangentially in direction of increasing θ

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

1.4

Achtung!

- The directions of these unit vectors depend on location in the xy-plane.
- Example #1: At location r = 2i + 0j . . .
 e_r = i and e_θ = j
- Example #2: At location $\mathbf{r} = 5\mathbf{i} + 5\mathbf{j} \dots$ $\mathbf{e}_{r} = (\mathbf{i} + \mathbf{j})/\sqrt{2}$ and $\mathbf{e}_{\theta} = (-\mathbf{i} + \mathbf{j})/\sqrt{2}$
- Example #3: At location r = 0i 4j . . .
 e_r = j and e₀ = i

Physics 260 Fall 2003

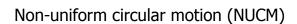
Chapter 9 (Sect. 3) and 10A

r, **v**, and **a** vectors in UCM

- radius: $\mathbf{r} = r \text{ times } \mathbf{e}_r$
- velocity vector: $\mathbf{v} = \mathbf{v}_{\theta}$ times $\mathbf{e}_{\theta} = \mathbf{v}_{\theta} \, \mathbf{e}_{\theta}$
 - speed $v = |v_{\theta}|$
 - $\mathbf{v} = v \mathbf{e}_{\theta}$ (for CCW motion)
 - $\mathbf{v} = \mathbf{v} \mathbf{e}_{\theta}$ (for CW motion)
- acceleration vector: $\mathbf{a} = -(v^2/r)\mathbf{e}_r$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A



- Radius: still have $\mathbf{r} = r$ times \mathbf{e}_r
- The velocity vector is still purely tangential:
 - $\mathbf{v} = v_{\theta}(t)$ times $\mathbf{e}_{\theta} = v_{\theta}(t)\mathbf{e}_{\theta}$
- The speed is a function of time: $v(t) = |v_{\theta}(t)|$
- Now the acceleration has two components:
- $\mathbf{a} = \mathbf{a}_r \text{ times } \mathbf{e}_r + \mathbf{a}_\theta \text{ times } \mathbf{e}_\theta = \mathbf{a}_r \mathbf{e}_r + \mathbf{a}_\theta \mathbf{e}_\theta$
 - the radial component: $a_r(t) = -v^2/r$
 - the tangential component: $a_{\theta}(t) = dv_{\theta}/dt$

Chapter 9 (Sect. 3) and 10A

19

Dynamics of Circular Motion

 We simply apply Newton's Second Law: in order to move with a particular acceleration a, an object of mass m must be moving under the influence of force(s) whose resultant is m times a:

$$\mathbf{F}_{\text{net}} = \mathbf{ma}$$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Uniform Circular Motion (UCM)

- At each instant, the acceleration vector points radially inward. It has a constant magnitude v²/r.
- Therefore the instantaneous net force <u>must</u> point radially inward and have a magnitude mv²/r. This is usually called the "centripetal force."
- Beware: Centripetal force is <u>just a name</u> for the necessary resultant of the physical forces that are acting. It does **NOT** belong in a free-body diagram.

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

An and an Managartura for LICM

Angular Momentum for UCM

- Using the center of the circle as the coordinate origin, what is the angular momentum vector for a particle exhibiting counterclockwise UCM in the xy plane?
- How about for clockwise UCM?
- In either case, does the angular momentum vary with time?
- Is this consistent with rotational version of Newton's 2nd Law?
- How does this connect with what you've already learned about circular motion under gravity?

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Nonuniform Circular Motion (NUCM)

- The instantaneous acceleration has a radial component -[v(t)]²/r and a tangential component dv_e/dt.
- Therefore the instantaneous net force <u>must</u> have components that are just m times these acceleration components.
- Why can't a satellite exhibit NUCM?

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

21

Noncircular Orbital Motion under Gravity

- When an object follows a noncircular orbit under the influence of gravity, what does the rotational version of Newton's 2nd Law tell us about the object's angular momentum?
- How is the rotational form of Newton's 2nd Law related to Kepler's 2nd Law (the "equal areas" law)?

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Reese Ch. 10, part A2 (pp. 436-445)

- · Rigid Bodies
- Spin Angular Momentum
- Rotational Inertia of Symmetric Bodies
- Equation for Rate of Change of Spin
- Kinetic Energy due to Spin
- Rotational Distortion of Objects

Physics 260 Fall 2003 Chapter 9 (Sect. 3) and 10A

Rigid Bodies

- A <u>rigid body</u> is an object which exhibits no deformation (change of shape). In a rigid body, the distance between any two bits of material (any two atoms, say) remains constant.
- Most of our study of rotational dynamics will deal with rigid bodies that have at least one axis of symmetry.

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Spin Angular Momentum ("Spin") of a Rigid Body

- For simplicity, consider a rigid body whose center of mass (CM) is at rest and whose rotation axis coincides with one of body's axes of symmetry. Then
 - Each of the atoms in the body is in uniform circular motion about the rotation axis, and all of the atoms have the same angular velocity.
 - If we use the CM as the coordinate origin and add up the (orbital) angular momentum vectors for all of the atoms, we get a simple result (after doing vector algebra and utilizing the system's symmetry):

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Comments on Spin

 The summation in the spin equation is called the rotational inertia (or "moment of inertia") of the object:

 $I \equiv \left(\sum_{i} m_{i} r_{i\perp}^{2}\right)$

- The rotational inertia I
 - depends on the total mass of the object and how the mass is distributed, and
 - also depends on the specific symmetry axis about which the body is rotating.

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Evaluating Rotational Inertia:I

· For a body consisting of several individual mass points connected by "massless" rods, we can directly apply the discrete sum:

For a body in which the matter is distributed continuously, we must interpret the sum as an integral:

 $\int r_{\perp}^2 dm = \int r_{\perp}^2 \rho(\vec{r}) dV$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Evaluating Rotational Inertia:II

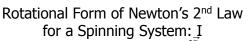
 For rigid assemblies whose parts are simple rigid bodies, we can simply add up the I-values for the parts (provided that the rotation axis coincides with a symmetry axis for each part):

$$I_{assembly} = \sum_{i} I_{i}$$

• Table 10.1 (p. 440) lists the rotational inertia values for some common symmetric bodies.

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A



- We previously obtained the equation for a single orbiting particle, and we have also defined the spin angular momentum of a rotating body as the vector sum of the orbital angular momenta of its various parts.
- These two facts mean that if we let $\vec{\tau}_{i(net)}$ denote the net torque on particle i and we define the total torque on the system as $\vec{\tau}_{total} \equiv \sum_{i} \vec{\tau}_{i(net)}$, then we get the rotational 2nd law for a spinning system: $d\vec{L}_{spin} \rightarrow$

Chapter 9 (Sect. 3) and 10A

..

Rotational Form of Newton's 2nd Law for a Spinning System: II

• The net torque $\vec{\tau}_{i(net)}$ on any one particle consists of an internal contribution (due to forces from other particles in the object) and an external contribution. In many situations the internal forces act along the line between the interacting particles, which means the total internal torque is zero. We only consider such cases, so we can write

$$\frac{d\vec{L}_{spin}}{dt} = \vec{\tau}_{total(external)}$$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Rotational Form of Newton's 2nd Law for a Spinning System: III

 Combining this equation with the expression for the spin angular momentum as the product of rotational inertia and angular velocity, we obtain

$$\frac{d\vec{L}_{spin}}{dt} = \frac{d(I\vec{\omega})}{dt} = \vec{\tau}_{total(external)}$$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Kinetic Energy due to Spin

 To obtain the total kinetic energy of a spinning object, we add up the (orbital) kinetic energies of the various parts. The result is:

$$KE_{total} = \frac{1}{2}I\omega^2$$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Rotational Distortion

 Although we think of Earth as a solid object, it is able to "flow" in response to stresses and it has a shape that is approximately the same as that of a spinning, self-gravitating fluid: an oblate ellipsoid. Newton recognized this, but confirming measurements were first made after Newton's death.

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Reese Ch. 10, part A3 (pp. 445-455)

- Precession
- Simultaneous Spin and Orbital Motion
- Synchronous Rotation & Parallel-Axis Theorem
- Pure Rolling Motion

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Precession

- If a rapidly spinning top is subjected to a torque that is perpendicular to its spin axis, the top slowly precesses: the direction of its symmetry axis gradually moves in the direction of the torque.
- For a given torque, the precession rate is inversely proportional to the spin rate: the faster a top spins, the more slowly it precesses.

Physics 260 Fall 2003

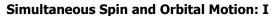
Chapter 9 (Sect. 3) and 10A

Earth's Precession

- The Earth precesses because the Moon and Sun exert a net external torque (due to the Earth's equatorial bulge and the fact that Earth's equator does not lie in the plane of its orbit).
- One precessional cycle takes nearly 26,000 years: the angular speed of Earth's precession is only about 100 parts per billion of its spin angular speed!

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A



The total KE of a system can be written as the sum of the spin KE and the translational KE associated with the motion of the system's center of mass:

$$KE_{total} = \frac{1}{2}I_{CM}\omega^2 + \frac{1}{2}Mv_{CM}^2$$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Simultaneous Spin and Orbital Motion: II

The total angular momentum of a system can be written as the vector sum of the spin angular momentum and the angular momentum associated with the motion of the CM of the system:

$$\vec{L}_{total} = I_{\mathit{CM}} \vec{\omega}_{\mathit{spin}} + M \vec{r}_{\mathit{CM}} \times \vec{v}_{\mathit{CM}}$$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Simultaneous Spin and Orbital Motion: III

The angular momentum associated with the motion of the CM of the system can also be written as:

$$\vec{L}_{orbital} \equiv M \vec{r}_{CM} \times \vec{v}_{CM} = M r_{\perp CM}^2 \vec{o}_{orbital}$$

Then the total angular momentum is:

$$ec{L}_{total} = I_{CM} ec{\omega}_{spin} + M r_{\perp CM}^2 ec{\omega}_{orbital}$$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Synchronous Rotation I

 If the spin angular velocity and orbital angular velocity have the same magnitude and direction $\vec{\omega}_{snin} = \vec{\omega}_{orbital} = \vec{\omega}$

then we say that the object exhibits

synchronous rotation.

 An example is the Moon, which exhibits (nearly) synchronous rotation as it orbits the Earth.

Physics 260 Fall 2003

• In the case of synchronous rotation, the body's total angular momentum simplifies to

$$\vec{L}_{total} = (I_{CM} + Mr_{\perp CM}^2)\vec{\omega}$$

 $\vec{L}_{total} = (I_{CM} + M r_{\perp CM}^2) \vec{\omega}$ In synchronous rotation, rather than rotating about its symmetry axis, the body is effectively rotating about a parallel axis through the coordinate origin. Referring to the equation above, the rotational inertia about this "displaced axis" is $I = I_{CM} + Mr_{1CM}^2$ This is called the parallel-axis theorem.

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Pure Rolling Motion

 Consider a rigid wheel (or other symmetrical rigid body of circular cross section). When it rolls along a surface without slipping, the point of its contact with the surface is the (instantaneous) axis of a synchronous rotation:

> Pure rolling is one type of synchronous rotation!

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Equations That Describe Pure Rolling on a Flat Surface

- When a rolling wheel of radius R rotates through an angle θ , the hub (center) of the wheel moves a distance $s = R \theta$.
- The hub's speed $v_{center} = R \frac{d\theta}{dt} = R\omega$
- The linear acceleration of the hub is given by

$$a_{center} = R \frac{d^2 \theta}{dt^2} = R \frac{d\omega}{dt} = R\alpha$$

Physics 260 Fall 2003

Chapter 9 (Sect. 3) and 10A

Total Kinetic Energy of a Rolling Wheel

• We apply our earlier result that the total KE is the sum of spin KE and the KE associated with translation of the CM:

$$\begin{split} KE_{total} &= KE_{spin} + KE_{translation} \\ \Rightarrow KE_{total} &= \frac{1}{2}I_{CM}\omega^2 + \frac{1}{2}Mv_{CM}^2 \\ \Rightarrow KE_{total} &= \frac{1}{2}(I_{CM} + MR^2)\omega^2 = \frac{1}{2}I\omega^2 \end{split}$$

(The last step uses the parallel-axis theorem.)

Physics 260 Fall 2003