VECTOR DIFFERENTIAL OPERATOR "DEL"

1. The Directional Derivative

Consider a function f which depends upon three independent variables (x,y,z). For the purposes of visualization, you can imagine these to be the three Cartesian coordinates that specify a position in space. If f(x,y,z) is a sufficiently smooth function, then it possesses at each point $\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$ and for each direction (as specified by a unit vector \hat{n} pointing in the desired direction) a **directional derivative**. The directional derivative is the rate of change of $f(\hat{r})$ with distance in the direction specified by \hat{n} . The directional derivative is denoted by $\frac{d\hat{f}}{ds}(\hat{r};\hat{n})$ and is given by

$$\frac{df}{ds}(\vec{r};\hat{n}) \equiv \lim_{\Delta s \to 0} \left[\frac{f(\vec{r}+\hat{n}\Delta s) - f(\vec{r})}{\Delta s} \right]$$
(Eq. 1)

We need to determine the relationship between $\frac{df}{ds}(\vec{r};\hat{n})$ and the **partial derivatives** of $f(\vec{r})$ with respect to each of the independent variables. These partial derivatives are <u>defined</u> by

$$\frac{\partial f}{\partial x}(\vec{r}) = \lim_{\Delta x \to 0} \left[\frac{f(x + \Delta x, y, z) - f(x, y, z)}{\Delta x} \right]$$

$$\frac{\partial f}{\partial y}(\vec{r}) = \lim_{\Delta y \to 0} \left[\frac{f(x, y + \Delta y, z) - f(x, y, z)}{\Delta y} \right]$$

$$\frac{\partial f}{\partial z}(\vec{r}) = \lim_{\Delta z \to 0} \left[\frac{f(x, y, z + \Delta z) - f(x, y, z)}{\Delta z} \right]$$
(Eq. 2a)
$$\frac{\partial f}{\partial z}(\vec{r}) = \lim_{\Delta z \to 0} \left[\frac{f(x, y, z + \Delta z) - f(x, y, z)}{\Delta z} \right]$$
(Eq. 2c)

To establish the relationship between the directional

derivative and these partial derivatives, we write out the quantity whose limit is $\frac{df}{ds}(\vec{r};\hat{n})$. Because the unit vector \hat{n} can be written as $\hat{n} = \hat{x}(\hat{n}\cdot\hat{x}) + \hat{y}(\hat{n}\cdot\hat{y}) + \hat{z}(\hat{n}\cdot\hat{z})$, we have

$$f(\vec{r}+\hat{n}\Delta s) = f\left[x+(\hat{n}\cdot\hat{x})\Delta s, y+(\hat{n}\cdot\hat{y})\Delta s, z+(\hat{n}\cdot\hat{z})\Delta s\right]$$

Therefore the quantity whose limit is the directional derivative has the form

By adding and subtracting equal terms and regrouping, we can rewrite this as $\frac{1}{\Delta S} \left[f(\vec{r} + \hat{n} \Delta s) - f(\vec{r}) \right]$

$$= \frac{1}{\Delta s} \begin{cases} f[x+(\hat{n}\cdot\hat{x})\Delta s,y+(\hat{n}\cdot\hat{y})\Delta s,z+(\hat{n}\cdot\hat{z})\Delta s] \\ -f[x,y+(\hat{n}\cdot\hat{y})\Delta s,z+(\hat{n}\cdot\hat{z})\Delta s] \end{cases} + \frac{1}{\Delta s} \begin{cases} f[x,y+(\hat{n}\cdot\hat{y})\Delta s,z+(\hat{n}\cdot\hat{z})\Delta s] \\ -f[x,y+(\hat{n}\cdot\hat{z})\Delta s] \end{cases}$$

$$+ \frac{1}{\Delta s} \left\{ f[x,y,z+(\hat{n}\cdot\hat{z})\Delta s] - f[x,y,z] \right\}$$

If we look carefully at each term in the above equation, we can see that in the limit $\Delta s \rightarrow 0$, the equation becomes

$$\frac{df}{ds}(\vec{r};\hat{n}) = (\hat{n}\cdot\hat{x})\frac{\partial f(\hat{r})}{\partial x} + (\hat{n}\cdot\hat{y})\frac{\partial f(\hat{r})}{\partial y} + (\hat{n}\cdot\hat{z})\frac{\partial f(\hat{r})}{\partial z}$$
(Eq. 3)

This is the desired expression for $\frac{df}{ds}(\vec{r};\hat{n})$ in terms of the partial derivatives of $f(\vec{r})$.

2. The Gradient of a Scalar Punction

Equation 3 has the form of a **dot product** between the vector \hat{n} and the following vector:

$$\frac{2}{2}\frac{\partial f}{\partial x} + \frac{2}{3}\frac{\partial f}{\partial y} + \frac{2}{3}\frac{\partial f}{\partial z}$$

This vector is called the **gradient** of the scalar function $f(\hat{r})$ and is denoted by **grad** f or by ∇f . Thus the directional derivative of f can be written

$$\frac{df}{ds}(\vec{r}; \hat{n}) = \hat{n} \cdot \text{grad} f(\vec{r}) = \hat{n} \cdot \nabla f(\vec{r})$$
(Eq. 4)

By carefully considering eq. 4, you should be able to convince yourself that the gradient of f(r) points in the direction of most rapid increase of f with distance. You should commit eq. 4 to memory, and you should also memorize the definition of the gradient of f(r):

$$\nabla f(\vec{r}) = \hat{x} \frac{\partial f(\vec{r})}{\partial x} + \hat{y} \frac{\partial f(\vec{r})}{\partial y} + \hat{z} \frac{\partial f(\vec{r})}{\partial z}$$
(Eq. 5)

Keep firmly in mind that the gradient operation produces a vector function from a scalar function.

3. Del. Div. and Curl

The gradient of a scalar functions is one of several useful derivatives that can easily be written in terms of the vector operator del, which is defined by

$$\overrightarrow{\nabla} = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}$$
 (Eq. 6)

We now mention two other derivatives involving del, namely div and curl.

Notice that the divergence operation produces a scalar function from a vector function. The divergence of a vector function is a measure of the local tendency of the vector function (or "field of vectors") to spread out or diverge.

The curl or rotation of a vector function u(r) is given by

$$\operatorname{curl} \vec{u}(\vec{r}) = \vec{\nabla} \times \vec{u}(\vec{r}) = \hat{x} \left(\frac{\partial u_z}{\partial y} - \frac{\partial u_y}{\partial z} \right) + \hat{y} \left(\frac{\partial u_x}{\partial z} - \frac{\partial u_z}{\partial x} \right) + \cdots$$

$$-\cdots + \hat{z} \left(\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \right) = \det \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial x}{\partial x} & \frac{\partial y}{\partial z} & \frac{\partial z}{\partial x} \end{vmatrix}$$

$$= \det \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial x}{\partial x} & \frac{\partial y}{\partial z} & \frac{\partial z}{\partial x} \end{vmatrix}$$

$$= \det \begin{vmatrix} \hat{x} & \hat{y} & \hat{y} & \hat{z} \\ \frac{\partial x}{\partial x} & \frac{\partial y}{\partial z} & \frac{\partial z}{\partial x} \end{vmatrix}$$

$$= \det \begin{vmatrix} \hat{x} & \hat{y} & \hat{y} & \hat{z} \\ \frac{\partial x}{\partial x} & \frac{\partial y}{\partial z} & \frac{\partial z}{\partial x} \end{vmatrix}$$

$$= \det \begin{vmatrix} \hat{x} & \hat{y} & \hat{y} & \hat{z} \\ \frac{\partial x}{\partial x} & \frac{\partial y}{\partial z} & \frac{\partial z}{\partial x} \end{vmatrix}$$

$$= \det \begin{vmatrix} \hat{x} & \hat{y} & \hat{y} & \hat{z} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial z} & \frac{\partial z}{\partial x} \end{vmatrix}$$

$$= \det \begin{vmatrix} \hat{y} & \hat{y} & \hat{y} & \hat{z} \\ \frac{\partial y}{\partial x} & \frac{\partial y}{\partial z} & \frac{\partial z}{\partial x} \end{vmatrix}$$

$$= \det \begin{vmatrix} \hat{y} & \hat{y} & \hat{y} & \hat{z} \\ \frac{\partial y}{\partial x} & \frac{\partial z}{\partial x} & \frac{\partial z}{\partial x} \end{vmatrix}$$

$$= \det \begin{vmatrix} \hat{y} & \hat{y} & \hat{y} & \hat{z} \\ \frac{\partial y}{\partial x} & \frac{\partial z}{\partial x} & \frac{\partial z}{\partial x} \end{vmatrix}$$

$$= \det \begin{vmatrix} \hat{y} & \hat{y} & \hat{y} & \hat{z} \\ \frac{\partial y}{\partial x} & \frac{\partial z}{\partial x} & \frac{\partial z}{\partial x} \end{vmatrix}$$

$$= \det \begin{vmatrix} \hat{y} & \hat{y} & \hat{y} & \hat{z} \\ \frac{\partial y}{\partial x} & \frac{\partial z}{\partial x} & \frac{\partial z}{\partial x} \end{vmatrix}$$

$$= \det \begin{vmatrix} \hat{y} & \hat{y} & \hat{z} \\ \frac{\partial y}{\partial x} & \frac{\partial z}{\partial x} & \frac{\partial z}{\partial x} & \frac{\partial z}{\partial x} \end{vmatrix}$$

The curl operation produces a vector function from a vector function. The curl of a vector function is a measure of the local tendency of the field of vectors to coil around.

4. Three Important Theorems Involving Del

In the calculus of functions of one variable, a central result is the fundamental theorem of calculus:

The indefinite integral of the derivative of a function is equal to the function itself, to within an additive constant.

In symbolic form, the fundamental theorem is:

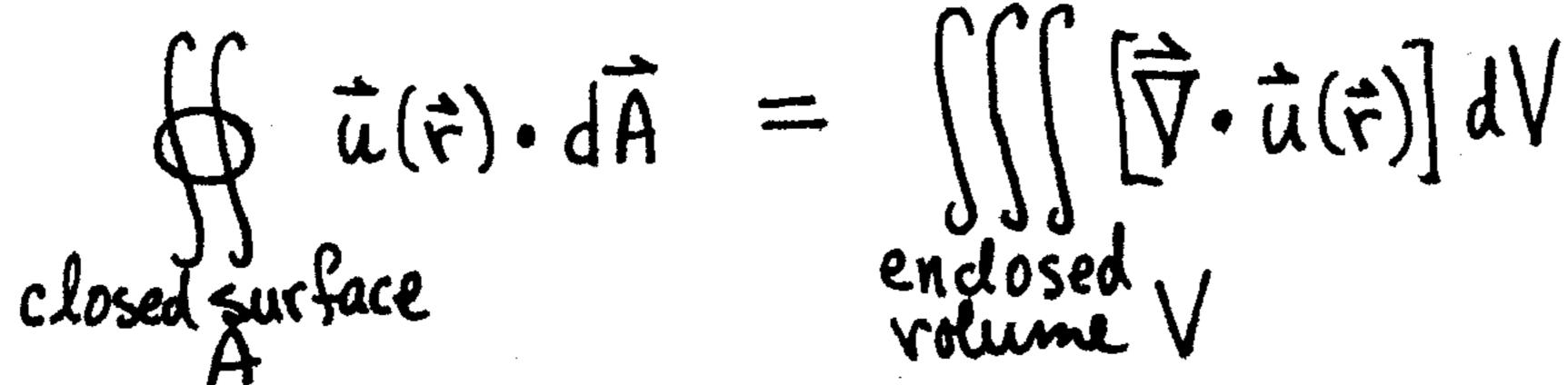
$$\int_{x} \frac{df(x)}{dx'} dx' = f(x) + C$$

In the calculus of functions of three variables, there are several results similar to this one, in which a function is related to the integral of a derivative. These theorems play a very important role in the statement of various principles of physics. We present three of these theorems here (without proof): the gradient theorem, the divergence theorem, and Stokes' theorem (or the curl theorem).

The Gradient Theorem. Suppose that we are given a scalar function $f(\vec{r})$ and any curve C joining points \vec{r}_1 and \vec{r}_2 , as shown. Then the difference between $f(\vec{r}_2)$ and $f(\vec{r}_1)$ equals the path integral of the gradient of $f(\vec{r})$. In symbolic form, the gradient

theorem reads
$$f(\vec{r}_2) - f(\vec{r}_1) = \int_{\vec{r}_1}^{\vec{r}_2} [\vec{\nabla} f(\vec{r})] \cdot d\vec{r}$$
(Eq. 9)

The Divergence Theorem. Suppose that we are given a vector function $\vec{u}(\vec{r})$ and a closed surface A which is the boundary of a region V of space, as shown. Then the flux of the vector function $\vec{u}(\vec{r})$ through the closed surface A equals the volume integral of the divergence of $\hat{u}(\hat{r})$ over the region V. In symbolic form, the



(Eq. 10)

Stokes' Theorem, or The Curl Theorem. Suppose that we

are given a vector function u(r) and a closed path C, which is the boundary of an (open) surface A, as shown.

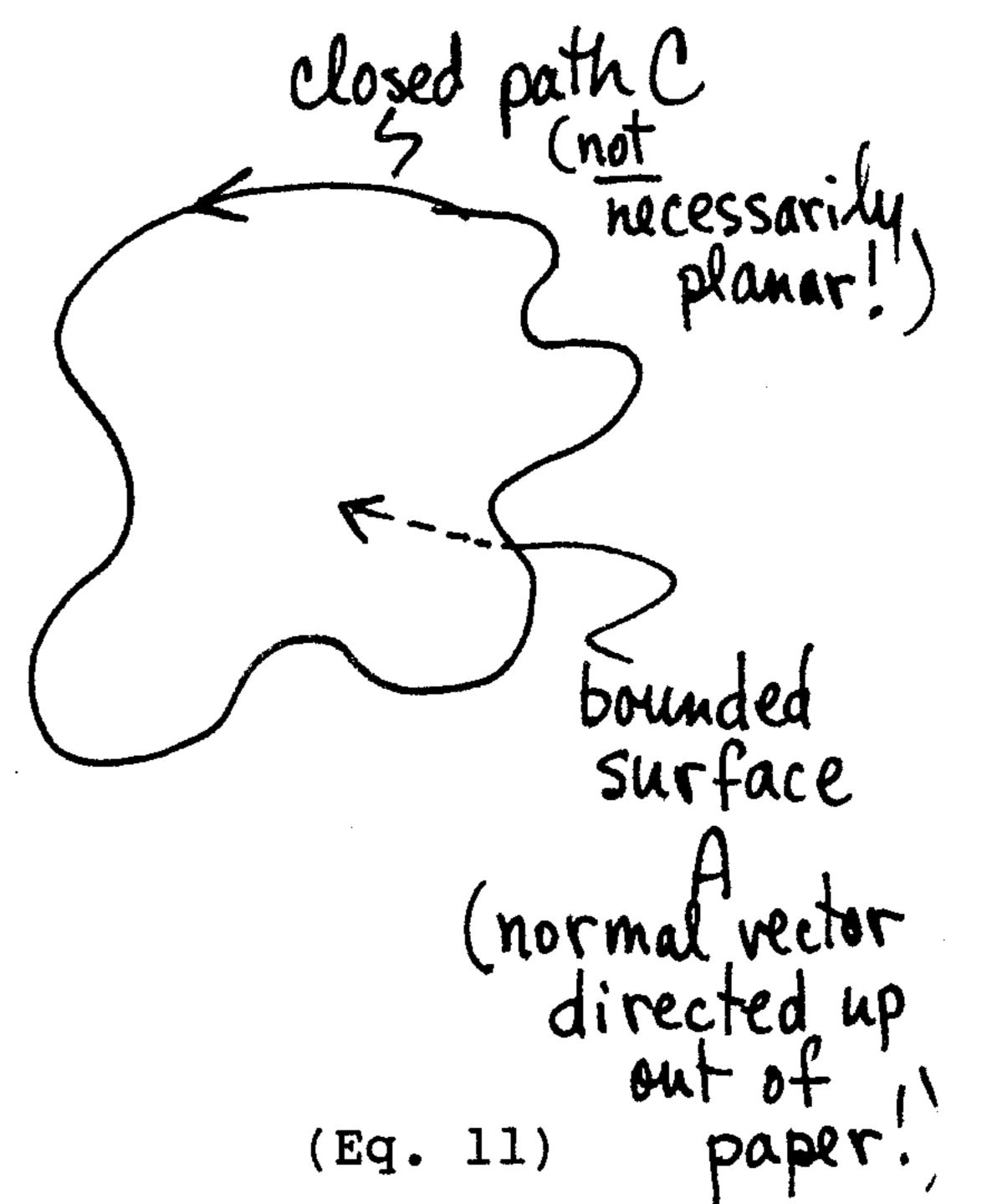
Then the counterclockwise line integral of $\vec{u}(\vec{r})$ around the path C equals the surface integral of the curl of u(r) over the surface A.

In symbolic form, Stokes' theorem reads

G.
$$\vec{u}(\vec{r}) \cdot d\vec{r} = \iint [\vec{\nabla} \times \vec{u}(\vec{r})] \cdot d\vec{A}$$
closed curve

Sounded

Surface A



5. Second-order Derivatives Involving Del

Often more than one operation involving del is applied to a function. One important example is the divergence of the gradient of a scalar function $f(\vec{r})$: this is called div(grad f) or $\nabla \cdot (\nabla f)$. Using the definitions, it is straightforward to show that div(grad f) equals

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

(You should check this claim!) This particular combination of second partial derivatives of f(r) is called the **Laplacian** of f and is usually called **del-squared** f and written $\nabla^2 f$:

$$\nabla^2 f = \vec{\nabla} \cdot (\vec{\nabla} f) = \text{div} (\text{grad} f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$
 (Eq. 12)

There are two second-order derivatives involving del which are identically zero. These vanishing derivatives are the **curl** of the gradient of any scalar function $f(\vec{r})$ and the divergence of the curl of any vector function $\vec{u}(\vec{r})$:

Curl (grad f) =
$$\nabla \times (\nabla f) = \vec{0}$$
 (Eq. 13)

$$\operatorname{div}(\operatorname{curl}\vec{u}) = \vec{\nabla} \cdot (\vec{\nabla} \times \vec{u}) = 0 \qquad (Eq. 14)$$

(You should prove these identities by applying the definitions.)