SAMPLE TEST #2




Name_________________________

Math 248



Extra Credit: What 1970’s TV show featured characters two of which were named
Spring 04                                                                      “Major Frank Burns” and “Private Radar O’Reilly”? 
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1. Let 
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A) Set up Newton’s Method for finding the FIXED POINT, 
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, of 
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on [0.5,2].
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B) Calculate the first two iterates of the algorithm in (A) if the initial guess is 
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C) According to a theorem proved in class what three theoretical assumptions are needed on your function created to carry out Newton’s method in part A) on [0.5,2]  in order guarantee that there exists an interval  a subset of [0.5,2]  in which Newton’s method will converge quadratically to the root, in this case also the fixed point of 
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,  for any starting values in the interval?





D) Show, referring to results from theorems from the course, that the function 
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itself will converge to a unique fixed point on the interval [0.5,2] using starting value in the interval with the fixed point iteration method. 


E) If the initial guess for your algorithm in part (D) is 
[image: image7.wmf]0

1

x

=

, use an error bound from class in conjunction with your work from part (D) to bound the error that you would have in 
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.  (DO NOT DO the algorithm 20 times)


2. The following data,  rounded to three decimal places, is from the function
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,  (0.0,1.000),    

(0.5, 2.718),  (1.0, 7.389), and  (2.0, 54.598) find the third degree Newton interpolating polynomial N(x) using  forward divided differences.  Do not expand.


3rd degree
N(x)=____________________________________________________________________________________


If we use N to approximate 
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f

,  what is the absolute error?_______________________


What is the best error bound that can be achieved using the remainder theorem for polynomial  interpolation?
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Using the above table you created, give, without expanding, the best 2nd degree center-divided difference Newton interpolating polynomial for the above data if you wanted to approximate
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.  (Don’t approximate).
2nd degree
N(x)=_____________________________________________________________________

3. Using three point numerical differentiation formulas, (which includes centered differences), numerically approximate 
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using the data above in 2 at x = 0.0, and  0.5. Use the formula that determines the best approximation in each case.


a.
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b.
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f.  What is the best error bound that can be achieved using  the error bound associated with three point method that you used to approximate
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4.  A) Find a way to calculate accurate values as 
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B) What is the rate of convergence, 
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approaches its limit as 
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Answer___________________


5. A. The function 
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.  Find the first two iterations of bisection method with starting values of   a = -3  and   b = 0  , and  Newton’s method with starting value 
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x = 1

, round all answers to 5 decimal places.  (ONLY ANSWERS WILL BE GRADED)
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  B. Without calculating any iterations, would you expect the Newton’s method demonstrate quadratic convergence if
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? Explain? ,
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? Explain?


C.  How accurate could you guarantee your 30th iteration in the bisection method?










Answer______________________

6.    Prove: 


(Hint: Results from theorems from class, and Math 235, might be useful)


6.  Given
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is a function on 
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has a unique fixed point 
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error bound for the algorithm 
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in terms of an initial guess 
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, describing how close an the iterate 
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1) ____________________________________________________
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Then  i) � EMBED Equation.DSMT4  ���has a unique fixed point� EMBED Equation.DSMT4  ���


            ii) The algorithm defined by � EMBED Equation.DSMT4  ���will converge 


               to � EMBED Equation.DSMT4  ���for any starting value � EMBED Equation.DSMT4  ���.








If   i)  � EMBED Equation.DSMT4  ���,


     ii)� EMBED Equation.DSMT4  ���


    iii) � EMBED Equation.DSMT4  ���
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2) ____________________________________________________





3) ____________________________________________________





� EMBED Equation.DSMT4  ���





� EMBED Equation.DSMT4  ���











12 points





6 points





4 points








10 points








_1077969738.unknown

_1112422710.unknown

_1112436643.unknown

_1112440763.unknown

_1112440965.unknown

_1112497608.unknown

_1112440900.unknown

_1112440940.unknown

_1112440799.unknown

_1112440607.unknown

_1112425771.unknown

_1112436633.unknown

_1112425780.unknown

_1112425740.unknown

_1112425762.unknown

_1112425749.unknown

_1112425728.unknown

_1078036159.unknown

_1078037546.unknown

_1078037648.unknown

_1078037740.unknown

_1078037950.unknown

_1078038081.unknown

_1078038105.unknown

_1078037814.unknown

_1078037663.unknown

_1078037627.unknown

_1078037635.unknown

_1078037574.unknown

_1078036399.unknown

_1078037429.unknown

_1077970740.unknown

_1078036104.unknown

_1078035128.unknown

_1078036078.unknown

_1077970107.unknown

_1077970296.unknown

_1077970066.unknown

_1049110603.unknown

_1065777239.unknown

_1077969544.unknown

_1077969670.unknown

_1065781395.unknown

_1065787656.unknown

_1077969525.unknown

_1065787502.unknown

_1065777434.unknown

_1065777118.unknown

_1049113256.unknown

_1049105790.unknown

_1049108609.unknown

_1049105087.unknown

_1049105411.unknown

_1049102311.unknown

