

11/16/04
I have complied with the honor code and requirements from this course.

Alexander Gerhard Beck X_____________________

Jordon Robert Herzog X_____________________

Kelly Elizabeth Harris X_____________________

John Douglas Hall X_____________________

Statement of the Problem:

Lex Luther has somehow acquired multiple stores of kryptonite and has hidden them away in different locations that he knows of according to the function f, and his notes on the subject A through E. If these roots are not acquired using the given format prescribed by Dr. Warne, and used to calculate the exact location of every single root, and y value, that the location of every kryptonite stash can be calculated, then French Officials will not be able to recover the kryptonite. If when Lex Luther escapes (11/16/04) all of the kryptonite is not found, then he will recover it and use it to kill superman and take over the world and stuff.

Newton’s method, bisection method, and 7 different fixed point methods(one for each root) were applied to determine the roots of function f. Initial iterations for the bisection and secant method were worked out by hand, then were later incorporated into the program to automatically determine the values. The result from these were used to determine the y coordinates for each of the roots providing the final locations of each of the kryptonite sites so they can be expediently excavated and disposed of.

Monday 8th 7:30 PM

Friday 12th 10-12 AM

Sunday 14th 7 – 9 PM

Monday 15th 7:30 PM

Description of the Solution Procedure:

PROGRAM superman2:

Implicit none is stated. Variables are declared and runAgian is set to ‘y’ so that the proceeding DO loop will not prematurely exit.

DO loop is declared and forms the primary body of the program from which all subroutines and functions are called. User is prompted "Enter the initial root guess for Newton's Method: " for initialGuess, and "Enter the lower and upper bounds for Bisection Method: " for lowBound, and highBound. These variables are used to calculate nResult, and bResult, based on FUNCTION newtonsMethon evaluated at (initialGuess), and FUNCTION bisectionMethon evaluated at (lowBound, and highBound) all respectively. "Newton's Method result: ", nResult is displayed. “section Method result: ", bResult is displayed on the next line. User is prompted runAgian as to whether or not they want to input different valuses, and if response is ‘n’ or ‘N’ an IF-EXIT statement is used to exit the loop. Program is STOPed.

FUNCTION newtonsMethod:

root is declared as the result of the FUNCTION. X0 is declared with INTENT(IN). Other variables are declared. Xn is declared as a 3 element array. maxIts is declared a PARAMATER and set to 1000, this allows only 1000 iterations in the function iterative loop. tolerance1 and tolerance2 are declared as PARAMATERs and are set to 10-16. tolerance1 and tolerance2 corresponds to an acceptable absolute error tolerance to accept the value Xn(0) as a root. counter is set to 0. Xn(0) is set to X0, the only variable imputed into the FUNCTION. fX is set to FUNCTION lexF evaluating variable Xn(0). fPrimeX is set to FUNCTION lexFprime evaluating variable Xn(0). FX and fPrimeX are tested with an IF statement to not be equal to 0, if either of them are equal to 0 then a root or an extrema is found, and root is declared to simply be equal to Xn(0), the users impute. Otherwise the IF statement is fulfilled and a DO loop is initiated to calculate the root to the given tolerances or to run through maxIts or 1000 iterations. counter is incremented, and loop is completed.

fX is set to FUNCTION lexF evaluating variable Xn(0). fPrimeX is set to FUNCTION lexFprime evaluating variable Xn(0). Xn(1) is set to Xn(0), and Xn(0) is set to Xn(0) - fX/fPrimeX.

xn = xn-1 – f(xn-1)/f ’(xn-1)

An IF-EXIT statement tests counter according to maxIts and tests both tolerance parameters. IF either counter is above maxIts, or |Xn(0) - Xn(1)| or |lexF(Xn(0))| within tolerance1 and tolerance2 respectively the loop is exited. counter is incremented, and loop is completed.

The approximation Xn(0) is set to root. root is RETURNed from FUNCTION newtonsMethod.
FUNCTION BisectionMethod:

root is declared as the result of the FUNCTION. X0 and X1 are declared with INTENT(IN). Other variables are declared. Xn is declared as a 3 element array. maxIts is declared a PARAMATER and set to 1000, this allows only 1000 iterations in the function iterative loop. tolerance is declared as PARAMATER and are set to 10-16. tolerance corresponds to an acceptable absolute error tolerance to accept the value Xn(0) as a root. counter is set to 0. Xn(0) is set to X0, and Xn(1) is set to X1, the two variables imputed into the FUNCTION.

A DO loop is initiated to calculate the root to the given tolerance or to run through maxIts or 1000 iterations.

Xn(2) is set to (Xn(0) + Xn(1)) / 2.
Xn = (Xn-2+ Xn-1) / 2

An IF statement is utilized to test if the signs of lexF(Xn(2)) and lexF(Xn(0)) are inconsistent. If they are THEN Xn(1) is Xn(2), ELSE they are consistent and Xn(0) is set to Xn(2). This is used to determine which side of the new iteration, Xn(2), the root is on and leave the old iteration on that side untouched as the iteration on the other side of Xn(2) is replaced by Xn(2).

An IF-EXIT statement tests counter according to maxIts and tests the tolerance parameter. IF either counter is above maxIts, or |Xn(0) - Xn(1)| < 2 * tolerance is fulfilled, the loop is exited. counter is incremented, and loop is completed.

The approximation Xn(2) is set to root. root is RETURNed from FUNCTION BisectionMethod.

FUNCTION lexF:

FofX is declared as the RESULT of the FUNCTION. Other variables are declared. X is declared with INTENT(IN). FofX_1 through FofX_4 are set as the 4 parts of Lex Luther’s Function evaluated at X.

f(x) = (0.0005e-0.004X^2) * (5e-X^2 –1) * ((x6 - 54.42192921x5 - 13.9104024x4 + 914.7130216x3) + (502.4509845x2 - 3846.144357x - 4190.026545))

FofX is set to the function which is the 4 parts combined using proper arithmetic to provide the full function at the value of X;

FofX_1 * FofX_2 * (FofX_3 + FofX_4). FofX is RETURNed from FUNCTION lexF.

FUNCTION lexFPrime:

FpOfX is declared as the result of the FUNCTION. X is declared with INTENT(IN). Other variables are declared. Fp0 through Fp7 are set as 4 parts of the derivative Lex Luther’s Function evaluated at X. FpOfX is set to the sum of Fp0 through Fp7 and thus is used to calculate the derivative at the given X. FpOfX is RETURNed from FUNCTION lexFprime.

END PROGRAM superman1

PROGRAM superman2:

Implicit none is stated. Variables and variable arrays are declared, PARAMETER numRoots is set to 7. A DO loop is declared to run through from i = 1 to numRoots, which is set to be 7.

This DO loop sets x0vals, x1vals, and all locations of the arrays roots and yValues to 0.

FILE 'c:\temp\coords.dat' is opened STATUS is set to 'REPLACE', and it is assigned to 3.

A DO loop is declared to run through from i = 1 to numRoots, which is set to be 7. "For root ", i, ": " is written to the screen. User is prompted "Enter x-a: " for x0vals(i), "Enter x+b: " for x1vals(i), and “Enter root: " for roots(i). bisectionResult is set to bisectionMethod evaluated at (x0vals(i), x1vals(i)) and secantResult is set to secantMethod evaluated at (x0vals(i), x1vals(i)). yValues(i) is set to the calcuation; 100*|bisectionResult – secantResult|. "Writing coordinate set ", i, "..." is written to the screen and "Location ", i, ":" is written to 3. Loop is completed.

Direction of displayed travel decided using 2 IF statements based upon sign of roots(i). If roots(i) is negative "Go " is written to 3 along with the result of the calculation; |roots(i) * 30| and " miles West". If roots(i) is positive "Go " is written to 3 along with the result of the calculation; roots(i) * 30, and " miles East".

Direction of displayed travel decided using 2 IF statements based upon sign of yValues(i). If yValues(i) is negative "Go " is written to 3 along with the result of the calculation; |yValues(i) * 30| and " miles South". If yValues(i) is positive "Go " is written to 3 along with the result of the calculation; yValues(i) * 30, and " miles North".

"Complete!" is displayed to the screen, along with 2 carrage returns, then "Coordinates written to C:\temp\coords.dat". FILE 3 is CLOSEd from being written. Program is STOPed.

FUNCTION secantMethod:

root is declared as the result of the FUNCTION. X0 and X1 are declared with INTENT(IN). Other variables are declared. Xn is declared as a 3 element array. maxIts is declared a PARAMATER and set to 3, this allows only 3 iterations in the function iterative loop. tolerance is declared as a PARAMATER and are set to .0001. tolerance corresponds to an acceptable absolute error tolerance to accept the value Xn(2) as a root. counter is set to 0. Xn(0) is set to X0 and Xn(1) is set to X1 the only two variable imputed into the FUNCTION. An IF statement is utilized to determine which of lexF evaluated at Xn(0) and lexF evaluated at Xn(1) is large in magnitude. If lexF(Xn(0))is less than lexF(Xn(1)), then a temporary variable, tempX is utilized in swapping Xn(0) and Xn(1), otherwise no change to the variables is made.

A DO loop is initiated to calculate final interation Xn(2). Xn(2) is set to Xn(1) - lexF(Xn(1)) * (Xn(0) - Xn(1))/(lexF(Xn(0)) - lexF(Xn(1)).

xn = xn-1 –f(xn – 1)*(xn-1 - xn-2)
 f(xn-1) - f(xn-2)

An IF statement is used to EXIT the DO loop in cases where counter is greater than maxIts or |lexF(Xn(2))| is less than tolerance. counter is incremented, and loop is completed.

root is set equal to Xn(2), and RETURNed from the FUNCTION secantMethod.

FUNCTION BisectionMethod:

root is declared as the result of the FUNCTION. X0 and X1 are declared with INTENT(IN). Other variables are declared. Xn is declared as a 3 element array. maxIts is declared a PARAMATER and set to 3, this allows only 3 iterations in the function iterative loop. tolerance is declared as PARAMATER and are set to 0.0001. tolerance corresponds to an acceptable absolute error tolerance to accept the value Xn(0) as a root. counter is set to 0. Xn(0) is set to X0, and Xn(1) is set to X1, the two variables imputed into the FUNCTION. A DO loop is initiated to calculate the root to the given tolerance or to run through maxIts or 3 iterations.

Xn(2) is set to (Xn(0) + Xn(1)) / 2.
Xn = (Xn-2+ Xn-1) / 2

An IF statement is utilized to test if the signs of lexF(Xn(2)) and lexF(Xn(0)) are inconsistent. If they are THEN Xn(1) is Xn(2), ELSE they are consistent and Xn(0) is set to Xn(2). This is used to determine which side of the new iteration, Xn(2), the root is on and leave the old iteration on that side untouched as the iteration on the other side of Xn(2) is replaced by Xn(2).

An IF-EXIT statement tests counter according to maxIts and tests the tolerance parameter. IF either counter is above maxIts, or ABS(Xn(0) - Xn(1)) < 2 * tolerance is fulfilled, the loop is exited.

The approximation Xn(2) is set to root. root is RETURNed from FUNCTION BisectionMethod.

FUNCTION lexF:

FofX is declared as the RESULT of the FUNCTION. X is declared with INTENT(IN). Other variables are declared. FofX_1 through FofX_4 are set as the 4 parts of Lex Luther’s Function evaluated at X.

f(x) = (0.0005e-0.004X^2) * (5e-X^2 –1) * ((x6 - 54.42192921x5 - 13.9104024x4 + 914.7130216x3) + (502.4509845x2 - 3846.144357x - 4190.026545))

FofX is set to the function which is the 4 parts combined using proper arithmetic to provide the full function at the value of X;

FofX_1 * FofX_2 * (FofX_3 + FofX_4). FofX is RETURNed from FUNCTION lexF.

END PROGRAM superman2

Summary of Results Obtained:

Discussion of Results and Conclusions:

