Phys. 337, Solid State Physics

HW #2 Solutions

Spring, 2005

1. (rewording Kittel 1.2) Consider planes in an fcc lattice with Miller indices (100) and (001).  These Miller indices are in relation to the conventional cell translation vectors a1 = a i, a2 = a j, and a3 = a k (these “conventional” vectors are used precisely for these kinds of reasons – that referring to planes relative to a cube is more straightforward than using non-orthogonal vectors).

However, since Miller indices are based on some set of translation vectors, we can give Miller indices based on the primitive translation vectors.  Using the primitive translation vectors for an fcc lattice as specified in Fig. 11 (Fig. 13 in 7th ed.), write Miller indices for the two planes specified above (in other words, write the Miller indices based on primitive lattice vectors that still identify the same planes of atoms). 

The conventional lattice spacing above is a. The primitive lattice vectors are  a1 = (a/2)(i + j), a2 = (a/2)(j + k), and a3 = (a/2)(k + i).  The (100) plane is a plane parallel to the y-z plane at x = a.  The intercepts using the primitive lattice vectors (i.e. number of primitive lattice vectors that allow us to get to the x = a plane) are 2, (, and 2 (a2 is parallel to the plane, so there is no intercept).  Taking the reciprocals, this is 
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.  Finding the smallest combination of integers gives us a label for that set of planes (101).

Similarly for the (001) plane based on the conventional translation vectors, the intercepts of the z = a plane in terms of the primitive lattice vectors are (, 2 and 2 to give Miller indices of 
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 for this particular plane, or (011) for that set of planes. 

2. (Elliot 2.5)  Derive an expression for the bulk modulus of an fcc Lennard-Jones solid at the equilibrium atomic distance.

The Lennard-Jones potential is:

Utot = 
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and 
B = 
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At the equilibrium spacing, (U/(R = 0, so B = 
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.
The volume of the unit cell in terms of the nearest-neighbor spacing R is V = 
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R3 and the volume of the crystal (N cells) is 
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NR3 .(Using the fact that the diagonal of the face is 2R = 
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a and the fact that there are 4 lattice points in the conventional cell of volume a3, so that the primitive cell volume is V = a3/4.)  
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Now V = 
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NR3, so (V = 3
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NR2 (R and 
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[or a longer, alternate method: R = (V/
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N)1/3 so 
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NR3) −2/3 = R−2/(3
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So, 
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Therefore:


B = 
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R3 · 
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 EMBED Equation.3  [image: image29.wmf](
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We could simplify this further since it is an fcc crystal, m = 12.13 and n = 14.45 and at the equilibrium separation,  = R0/1.09.

B = 0.314 ·
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= 0.314 ·
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(And notice that the units are energy/volume = force×distance/volume = force/distance2 = pressure, as a modulus should be.)

3. (Version of Kittel #3.2) 

(a)  Using the Lennard-Jones potential, calculate the ratio of the cohesive energies of neon in the bcc and fcc structures (Answer: 0.958).  The lattice sums for the bcc structure are (pij-12 = 9.11418 and (pij-6 = 12.2533.

(b) Using the answer from part a, which lattice does neon form and why?

bcc: 
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U(R)2N[9.114(R)12.253(R)].
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 At equilibrium [image: image33.wmf]6
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 and U(R0) = 2N (−4.116)
fcc: [image: image34.wmf]126

U(R)2N[12.132(R)14.454(R)].
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 At equilibrium [image: image35.wmf]6
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U(R)2N(4.305).
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 So, the cohesive energy ratio bcc/fcc is 0.956.  
The fcc structure is more stable because it is at a lower energy (more negative) than the bcc.

4.  In the following fictitious 2D ionic crystal, the black circles represent positive charges and the white circles represent negative charges (± e).  The nearest neighbor distance is R0.

[image: image37.jpg]



Use the positive charge at the origin as the reference atom.  It has 4 nearest neighbors (n), 4 next-nearest neighbors (nn), 4 next-next-nearest neighbors (nnn), and 8 next-next-next nearest neighbors (nnnn).  The Madelung constant is a sum over all possible atoms.  However, what would the sum be after including terms up through the


(a) …nearest neighbors (n)


…next (nn) [i.e. including both the nearest neighbors and the next nearest]


…next-next (nnn)


…next-next-next (nnnn)

The Madelung constant is  = ((±/pij).  The sign is determined such that opposite charges contribute positively and  > 0 will be a stable crystal.  Unlike in the book, I chose the reference ion to be positive, so negative ions will contribute a positive value to the sum.  n, nn, nnn, and nnnn are atoms at increasing distance from the central atom:
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For nearest neighbors (n), pij = 1 and there are 3 negative charges and one positive so  = 1 + 1 + 1 – 1 = 2.


For nn, there are two positive and two negative ions at a distance
[image: image39.wmf]2

, so pij =
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1

.  The positive and negative ions cancel out so the nn term is zero.   = + 0 = 2.


For nnn, there are again 2 positive and 2 negative ions at a distance pij = 2.  The nnn term is therefore zero and  = + 0 = 2.


For nnnn, there are 6 positive and 2 negative ions at a distance
[image: image41.wmf]5

, so pij =
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and  = – 6
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1

 + 2
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1

 = 0.21.  


(b) Do you think this would be a stable crystal?  Explain.  Would your answer be affected if the charge at each site was ± 2e?


At this point in the sum, it’s not entirely clear since the value is still changing appreciably, but I would guess yes.  The condition for stability is that  > 0.  This is unaffected by the charge, since the energy scales with the charge, but the stability is not changed.


For a real crystal, which is 3D with positive ions typically being surrounded entirely be negative ions, the sum generally converges quickly and is mostly dominated by the first term, which is then the number of nearest neighbors.


(c) Assume the equilibrium lattice spacing is 2 Angstroms, and the repulsive core has a characteristic length of  = 0.2 Angstroms.  What is the average cohesive energy per atom?  What is the energy of two oppositely charged atoms separated by 2 Angstroms relative to the atoms being separated by an infinite distance? 
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The result is 2.18 ( 10-19 N·m = 2.18 ( 10-19 J = 1.36 eV/atom.  This is in the right order of magnitude of 1-10 eV/atom for real 3D materials (e.g. listed in Table 3.1 in Kittel). 

For two charges, 
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= 11.5 × 10−18 J = 7.2 eV/atom.  So, it’s about 5 times bigger but on the same order as the “real” answer.
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